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Flattening of a Patterned Compliant Solid by Surface 7 

Stress  8 
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, Anand Jagota

a* 
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We measured the shape change of periodic ridge surface profiles in gelatin organogels 10 
resulting from deformation driven by their solid-vapor surface stress. Gelatin organogel was 11 
molded onto Poly-dimethylsiloxane (PDMS) masters having ridge heights of 1.7 and 2.7 µm 12 
and several periodicities. Gel replicas were found to have a shape deformed significantly 13 
compared to their PDMS master.  Systematically larger deformations in gels were measured 14 
for lower elastic moduli. Measuring elastic modulus independently, we estimate a surface 15 
stress of 107±7 mN/m for the organogels in solvent composed of 70 wt% glycerol and 30 wt% 16 
water. Shape changes are in agreement with a small strain linear elastic theory. We also 17 
measured the deformation of deeper ridges (with height 13 µm), and analysed the resulting 18 
large surface strains using finite element analysis. 19 

 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 

Introduction 

Compliant amorphous solids such as elastomers and gels 

occupy an important place in current materials research.  For 

sufficiently compliant materials, their surface stress can exert a 

significant influence on material behaviour by driving or 

resisting deformation.  The surface stress of many elastomers 

and gels is isotropic and can be represented by a single number, 

�1–3. How the shape of compliant solids is influenced by 

surface stress of the solid-fluid interface has been examined in 

several recent studies4–9. Often, surface stress plays a 

significant role when the characteristic material length scale, 
� �� , exceeds some characteristic geometrical feature size, 

where � is the small strain Young’s modulus1,10. For stiff solids 

such as metals and ceramics this characteristic material length 

scale is generally smaller than a nanometer and so the resulting 

deformations are very small and difficult to measure10,11. For 

compliant solids such as elastomers and gels, however, surface 

stress driven deformations can be macroscopic (tens to 

hundreds of µm) and can be readily measured.  Mora et al. have 

observed an elastic Rayleigh-Plateau instability in a thin 

filament of solid hydrogel6.  Similarly, when a thin elastomeric 

wire was immersed into a liquid a substantial elastic 

compression due to the solid capillary pressure was reported8.  

Deformation of thin elastomeric films due to liquid drops 

placed on their surface has been shown to be influenced 

strongly by surface stress12,13.  We have previously shown that 

surface stress causes deformation of a ripple surface pattern in a 

hydrogel9.  

Here we present a study of the surface deformation of a 

compliant gelatin organogel patterned into a periodic ridge-

channel shape.  When the gel is released from the geometric 

constraint imposed by a PDMS mold consisting of periodic 

ridges (see Fig. 1a), the surface stress of the exposed gel/air 

interface causes the gel to deform.  We measure the shapes of 

the master and the deformed gel, in particular, the reduction in 

the peak-to-valley distances (�) of the gel’s surface features 

upon exposure to air. We systematically change the elastic 

modulus of the gels to change the amount of deformation 

caused by the surface stress. The elastic modulus of the gels is 

determined independently using beam bending and punch tests 

(see SI).  The surface stress of the gels is determined by 

comparing measured deformation to the prediction of models 

for surface-stress-driven elastic deformation.  Our results 

suggest that shape change for nearly flat surfaces in the case of 

simple geometries such as periodic ridges can be used for 

determination of surface stress of compliant solids. 
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Experimental 

Fabrication of periodic ridge samples 

Polydimethylsiloxane (PDMS) surfaces structured with a 

periodic ridge geometry were used to replica-mold gelatin gels 

(Figure 1).  Three sets of ridge geometries, one with height (�) 

of 13 µm and two others with lower heights of 1.7 and 2.7 µm 

were used in this work. For the lower height ridge geometries 

the width (�) of the ridge was kept the same as the spacing (�) 

between the ridges, whereas for the high ridge geometry three 

different periods � (�=	�+	�) were fabricated. Height, �, is 

taken as the initial peak-to-valley distance for the gel sample 

i.e. prior to its demolding (assuming that the gel fills the PDMS 

master without any air cavities9).  

 

Table 1 lists the details of the periodic ridge geometry. The 

fabrication details for surface structuring of PDMS with ripple 

geometries are described in detail elsewhere 14.  

 

Table 1. Dimensions (with standard deviations) of periodic 

ridge geometry. For the case of lower height ridges (h ~1.7 and 

2.7 µm) the width was not measured separately but was 

estimated in the model as half of the mean period. 

 

Ridge/cha

nnel h 

[µm] 

Period 

�	 

[µm] 

Period 

�
 

[µm] 

Period 

�� 

[µm] 

Ridge 

width 

w 

[µm] 

1.68±0.03 - 39.68±0.

52 

49.39±0.

39 
�/2 

2.66±0.05 24.82±0.

49 

39.77±0.

37 

49.54±0.

29 
�/2 

13.16±0.1

5 

34.55±1.

12 

49.42±0.

64 

64.90±0.

87 

10.91±0.2

1 

High temperatures and continuous stirring were employed to 

obtain homogenous pre-gel mixtures following Baumberger et 

al. 15. Organogels were prepared by dissolving 7.5, 10, 12.5 and 

15 wt% gelatin powder (type A from porcine skin, Sigma 

Aldrich) in mixtures of 70 wt % glycerol - 30 wt% deionized 

water, followed by continuous stirring at 85 °C for 4 hours. 

This was followed by an additional hour of heating without 

stirring to allow the air bubbles to escape the pre-gel mixture. 

The pre-gel mixture was poured into a petri dish containing the 

structured PDMS mold placed with its structured side facing 

up. The liquid gel filled the PDMS mold and rose to a thickness 

of about 2 mm above the PDMS surface. The liquid wets the 

PDMS surface completely and upon cross-linking takes the 

shape of the PDMS surface (see SI and 9).  The pre-gel mixture 

was allowed to cool and cross-link at room temperature for 

about 10-15 min after pouring. Subsequently, the mold was 

placed in a refrigerator at 4 °C for 16.5 h to complete the 

gelation process. The gel was then removed and allowed to 

equilibrate to room temperature for 1 h prior to demolding and 

gel characterization.  

The gel and PDMS surface profiles were measured using an 

optical profilometer (Zemetrics ZeGage, Zygo Corp. CT USA).  

 

Measurement of Elastic Modulus 

 

Elastic moduli of the gel samples were measured independently 

by beam-bending and a contact compliance method. In the 

contact compliance method, a polished steel cylindrical flat 

probe is indented on the flat surface of a block of gelatin gel 

(30x30 mm and 4-5 mm thick) at a constant speed of 1 µm/s to 

a pre-defined indentation depth (~50-150 µm) and retracted at 

the same speed to the starting position. The indenter radius (~ 

1mm) is small in comparison to the lateral dimensions of the 

gel block. The contact was monitored using a microscope. The 

force and the indentation depth during indentation/retraction 

were recorded using a load cell (Honeywell Ltd.) and a 

capacitive displacement sensor, respectively. The compliance 

of the sample was determined from the slope of the force versus 

indentation depth curve and the Young’s modulus was 

computed following Rong et al. 16 (details in supplementary 

information). Beam bending tests were additionally performed 

as an independent modulus measurement (see SI for detailed 

description).  The Young’s moduli of the gels range from 14-50 

kPa. We also studied the effect of loading rate by conducting 

indentations at different rates (0.01-10 µm/s) and found no 

significant difference in the measured Young’s modulus. 

 

Results 

 
Experimental results 

a) Periodic ridge geometry � ~ 2.7 and 1.7 µm 

 

Figure 2 (a) shows a 3D surface profile of a PDMS mold with a 

periodic ridge-channel geometry against which a gel with 

Young’s modulus  � = 32.5 kPa was molded. The measured 

surface profile of the demolded gel sample is shown alongside.  

  Figure 1: (a) SEM image of a typical PDMS master periodic ridge geometry. (b) Schematic of the periodic ridge geometry.  
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We observe that the gel profile is significantly rounded 

compared to the sharply edged periodic ridges of the PDMS 

master into which it was molded. The deformed height (��) and 

the rounding of the edges create a sinuous profile, which can be 

seen from the line scans (Figure 2(b)) of the surfaces of the gel 

sample and the PDMS master.  Using small strain theory the 

entire surface profiles (eq. [11] below, continuous lines, Figure 

2 (b)) for the PDMS (which is the same as the undeformed gel 

for � = 0 mN/m) and the deformed gel (� = 100 mN/m) were 

evaluated and plotted alongside experimental data. For the 

shallow profiles, the theory based on small strain elasticity fits 

the data well.  

Figure 2 (c) and (d) shows the measured ridge height of PDMS 

master (�) (square symbols) and its gel replica (��) after 

demolding. The maximum height (peak to valley) of the 

deformed sample (hd) are plotted against the product of periodic 

spacing (�) and elastic modulus (�) of the gels (symbols 

circles, triangles and inverted triangles represent, respectively, 

spacings � ~ 25, 40 and 49 µm).  A systematic reduction in the 

gel height � with reduction in the gel modulus was observed. 

Least square fits to the experimental data using the small strain 

theory (eq. [11]) are plotted for the two initial heights, � ~ 2.7 

µm (figure 2 (c)) and � ~ 1.7 µm (figure 2 (d)). The fits are 

generated using a single fitting parameter, the mean surface 

Figure 2: (a) Measured 3D surface profile of periodic ridge geometry showing PDMS master and its gel replica for � = 32.5 kPa, �	~ 

25 µm and initial height � ~ 2.7 µm. The black lines over the surface profiles represent the position of the line scan in (b). (b) Line 

scans of the PDMS and gel surface profiles (circle symbols) and the theoretically predicted PDMS and gel profiles (continuous lines)  

using eq. [11] and a single fitting parameter of σ = 100.0 mN/m for the deformed shape. (PDMS and gel profiles have been shifted 

with respect to the y-axis such that their mean lies around zero) (c) Final gel height (��) (symbols circles, triangles and inverted 

triangles represent, respectively, spacings � ~ 25, 40 and 49 µm) compared to (initial) PDMS (square symbols) with ridge height � ~ 

2.7 µm (d) � ~ 1.7 µm as a function of several elastic moduli (�) and periodic separations (�). Least Square fits using eq. [11] (solid 

black lines in (c) and (d)) estimate the surface stress to be 100.0±9.4 mN/m and 114.2±11.5 mN/m (95% confidence) for � ~ 2.7 and 

1.7 µm respectively. 
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stress, of �= 100.0 and �=114.2 mN/m for � ~ 2.7 and 1.7 µm, 

respectively. We further determined the accuracy of the fitted 

surface stress 17 and found, with a confidence of 95%, that �= 

100.0±9.4 mN. 

 

b) Analysis of deformation driven by surface stress 

To analyse the shape change we assume that deformation is 

driven by the surface stress. Further, we have assumed that the 

boundaries are traction free and the material is elastic. There is 

little change observed experimentally in the dimension parallel 

to the ridges, hence we use a plane strain condition. 

 

When the ridges are shallow, the deformation is small, and a 

closed form approximate solution can be obtained based on a 

scheme used by Hertz to compute the deformation of elastic 

spheres in contact 18. Specifically, instead of applying the 

Laplace pressure on the deformed surface, which is not flat, we 

determine the deformation caused by the Laplace pressure by 

imposing it on a flat elastic half space. This procedure is valid 

provided that the curvature of the deformed surface is small.  

Since periodic ridge surface profiles can be represented by a 

Fourier series, the undeformed surface profile ��is 

 

�� � �� � ∑ �������
��	 �
����     [1]  

 

where (��, ��� )  are Fourier coefficients.  The deformed surface 

profile, after peeling the gel off the PDMS master is given by 

 

� � � � ∑ ������
��	 �
����   [2] 

 

The Laplace pressure p that causes the surface flattening is 

equal to the product of surface stress and curvature which we 

assume to be small.   Using [2],  

 

" � ��" � $∑ ��� �%�
&�&

�&  ��� �
����  �
��	 	 [3] 

 

The Laplace pressure is calculated based on the unknown final 

shape (eq.[2]), not the initial shape.  For this reason, although 

the kinematics and elasticity is linear, the final result relating 

shape change to the surface stress that drives it is nonlinear.  As 

mentioned earlier, the vertical displacement u caused by the 

Laplace pressure (eq. [3]) was computed based on the elastic 

solution of a periodic normal traction acting on the surface of a 

flat elastic half space 19.   Using superposition, u is found to be: 

 

' � $∑ 4) �*+�
�  � ,

-∗ ��� �

���
�  �

��	  [4] 

 

The final and the initial shapes of the surface are related to each 

other by 

 

� � �� � ' [5]

  

The relation between the Fourier coefficients of �� and y can be 

found using [1], [2], [4] and [5], which results in 

 

�� � *+/

	0%�� 1+
23∗ 

; � � �� [6] 

 

Equation [6] shows that the higher Fourier modes (larger n) are 

attenuated by surface stress to a greater extent than are modes 

with smaller n.  The Fourier coefficients of the undeformed 

profiles are 

 

��� � 
5
�� �67 ���8�  ; �� � 58

�  [7] 

 

The shape of the deformed profile can be found using [6], [7] 

and [2], resulting in 

 

� � 58
� � 
5

� ∑ 9:��+;<2  
�=	0%�� 1+

23∗ >
�
��	 ��� �
����   [8] 

 

The peak to valley height of the deformed profile is    

 

 �� � ∑ �� $�
��	 ∑ ?$1A����

��	  

 

� %5
� ∑ BCD=?&+EFA;<

2 >
?
�G	A�	0%�1?&+EFA

23∗  
�
��	  [9] 

 

Figure 3 shows the shape change of a gel replica with 

increasing surface stress predicted using eq. [8] (500 terms 

were included in the calculation). As seen already in Figure 2b, 

compared to the initial sharp edges present in the periodic ridge 

profile, the deformed shape of the gel has significantly rounded 

edges.  

Equations [8] and [9] were used to fit the data shown in Figure 

2.   

 

c) Deformation of deeper ridge geometry  � ~ 13 µm        

Compliant materials are often structured by molding into a 

master made of much stiffer material and it is common for 

feature height to be about the same size as other dimensions 

such as width or spacing.  For such cases, deformation can be 

significantly larger and its analysis requires numerical methods.  

Here we demonstrate that a finite element analysis of larger 

deformations can be used to model this more general situation 

of surface-stress-driven deformation. 
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Figure 3: Prediction of final shape of the gel profile based on 

eq. [8] for a low height (� ~ 2.7 µm) periodic ridge geometry 

with Young’s modulus � = 33 kPa and � ~ 25 µm. Surface 

stress � increases from 50 -200 mN/m. 
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A straightforward dimensional analysis shows that  

 
5H
5 � I � ,

�- ,
8
� ,

5
�  [10]   

 

where ��  is the deformed height for a ridge geometry with 

initial height �.  In the case of shallow ridge, 
5
� ≪ 1 , for the 

small-strain solution in eq. [9], the ratio 

 
5H
5 � I � ,

�- ,
5
�   

 

is independent of �/�  . However, when �/�  is large, the Hertz 

approximation is no longer valid, hence eq. [9] is not 

applicable. For these high ridge geometries, we carried out 

FEM analysis with a two dimensional plane strain modelusing 

ABAQUS/Standard 6.8® to simulate the surface deformation.  

Since the length of the ridges is very long in comparison with 

its lateral dimensions, a plane strain model is used. The 

predicted deformed surface profile was fitted to that obtained 

by experiment using surface stress as a fitting parameter.  

In all our simulations, the gel was modelled as an 

incompressible neo-Hookean material 20 with strain energy 

density function 

 

K � L

 ?M	 $ 3A,							M	 � �	
 � �

 � ��
  [11] 

 

where I1 is the first invariant of the left Cauchy-Green 

deformation tensor, �:’s are the principal stretch ratios and 

O � �/3 is the small strain shear modulus.  

The surface stress, σ, is assumed to be a material constant 

independent of deformation and composition 3. Surface tension 

was modelled by augmenting the finite element model by a set 

of user-defined 2-node linear surface elements, which discretize 

the exposed gel surface 21.   Since the deformed surface is a 

long cylinder, one of the principal curvatures is zero; let the 

other be denoted by κ. The tractions T on the deformed solid 

body are related to the rate of change of tangent t to the surface, 

i.e., the surface curvature, by the Young-Laplace equation 

 

P � ,�Q
�9 ,  [12] 

 

where s is the arc length of the deformed cross-section curve. 

Hence the net nodal force applied on the body due to a small 

patch of surface spanning two surface elements is 

 

R � S P

	 T� � �?Q
 $ Q	A [13]  

 

where t is the tangent vector of the surface elements, 1 and 2 

refer to the surface elements before and after the node 21.   

Figure 4 shows the deformed shape of a typical demolded gel 

sample (� = 44 kPa,  � = 200 mN/m) predicted by FEM 

simulation.  

Figure 5 shows the deformed surface profile calculated by FEM 

for a high ridge geometry (� =13 µm, � =34.15 µm, w=11 µm, 

� = 44 kPa) in the experiment with increasing surface stress. As 

expected, larger value of surface stress causes more rounding at 

the edges and lower deformed height. 

 

 

 

Figure 6 shows the line scans (circle symbols) across the 

measured surface profile of a PDMS master and its gel replica 

(� = 35 kPa, �	~ 35 µm) for the case of ridge height � ~ 13 µm. 

The least square fit results using FEM analysis are also 

presented alongside. The ratio of the deformed gel height ��  to 

the initial height � of the PDMS master (square symbols) is 

plotted in figure 6(b) for three different periodic spacing � 

(symbols circles, triangles and inverted triangles represent, 

respectively, spacing of � ~ 35, 50 and 65 µm, see Table 1) and 

five different moduli (�). Using least square fits based on the 

FEM model a surface stress value of 130.0±21.5 mN/m was 

estimated (lines in Figure 6(b)). The surface profile predicted 

by FEM simulation closely matches the experimental result as 

shown in Figure 6a. As previously stated, the precision of the 

fitted surface stress represents a 95% confidence interval 17.  

The data showing the deformed gel heights ��  in comparison to 

their starting ridge height is given in SI . The values of surface 

stress obtained in this case are similar to those estimated for 

shallow ridge geometry. 

FEM analysis for the case of �~ 2.7 µm (see SI) yielded a value 

of 105.0±17.6 mN/m for surface stress, in good agreement with 

that obtained using small strain theory, 100.0±9.4 mN/m.  The 

difference in surface stress needed (130 mN/m) for the higher 

profile samples could be due to departure from the neo-

Hookean model used – our purpose here is mainly to 

demonstrate that larger surface-stress deformations can be 

modelled numerically. 

Figure 4: Deformed configuration of a typical demolded gel 

sample predicted by FEM simulation for  � = 44 kPa,  � = 200 

mN/m. Contours represents the vertical displacement U (µm). 

Figure 5: Simulation results for the shape deformation of the high 

periodic ridge geometry � = 13 µm) with a Young’s modulus � = 

44 kPa and � =34.15 µm as a function of increasing surface stress.   

20 30 40 50 60 70 80
-30

-20

-10

0

10

20

30

Distance (µm)

H
e
ig

h
t 
(µ

m
)

 

 

Initial Shape

σ = 50 mN/m

σ = 100 mN/m

σ =200 mN/m

Page 5 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

 

Discussion and Conclusions 

We measured and characterized surface deformations in 

patterned organogels due to their surface stress. When a gel 

molded into a patterned (PDMS) master is subsequently 

separated from it, a new gel-air interface is created. This 

interface has a surface stress, in response to which the gel 

deforms, setting up internal stresses that balance the surface 

stress. We show that surface stress is able to drive significant 

deformation owing to the relatively low elastic moduli of the 

gels.  

The characteristic strains encountered for samples with a 

shallow profile are on the order of 2)?� $ ��A/�,, which is 

small compared to unity, indicating that strains in the sample 

are generally small except at the corners, where strains are very 

large (if the corner is perfectly sharp, the strain is theoretically 

infinite).  For shallow-profile samples, since �/� <<1 and the 

average strain is small, we employed an analytical model based 

on periodic loading of a flat surface.  The periodic surface is 

represented by Fourier series and the higher Fourier modes of 

the surface profile suffer greater deformation (eq. [3],[12]) 9,22. 

The predicted gel profiles using small strain theory for shallow 

geometry as well as the FEM analysis in the high ridge 

geometry case match the experimentally measured profiles 

quite well (Figure 2b & 3a). We estimated surface stress � 

=100.0±9.4 and 114.2±11.5 mN/m, respectively for �~ 2.7 and 

1.7 µm (with average of the two estimates of surface stress �= 

107±7 mN/m). 

For the case of high ridges (�~13 µm), the characteristic strains 

are moderately large, of the order of  2)?� $ ��A/� >100%.  

Using a FEM model in which the gel was assumed to be 

incompressible with neo-Hookean elasticity, we showed how 

such deformations can be modeled.  We have assumed a single 

surface tension value for a given set of samples independent of 

their solid content and its surrogate, the elastic modulus.  The 

quality of the resulting fits generally supports this hypothesis.  

Because the gel composition is dominated by the solvent, which 

constitutes roughly 90% of the solid gel, it would appear that 

surface stress should be determined primarily by surface 

tension of the water/glycerol mixture.  However, the overall 

surface stress of 107±7 mN/m is significantly higher than that 

expected from the surface tension values of the glycerol/water 

mixture (for aqueous glycerol with ~60wt% glycerol, surface 

tension � = 68.5 mN/m 23 ).  One possibility is that the ternary 

system (solid component and the two liquids that constitute the 

gel) forms significantly different structures. We hypothesize the 

formation of a new surface structure to explain the high overall 

stress. Water-glycerol mixtures with high concentration of 

glycerol (> 60 wt%) have been known to show enhancement of 

structured water24. Timasheff25 found that a perturbation in the 

chemical potential of glycerol in the presence of the 

polypeptide protein gelatin results in the formation of new 

ternary phases consisting of water-gelatin-glycerol.  Sanwlani 

et al. have shown, using Raman analysis, that for such a ternary 

system glycerol enhances structuring of water molecules (ice-

like structure) causing gelatin molecules to compartmentalize to 

regions where glycerol-free water is available24.  We point to 

the plausibility that a new structure of the water/glycerol/gel-
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Figure 6:  (a) Line scans across measured surface profile of periodic ridge geometry for PDMS master and its gel replica (circle 

symbols) with  � = 35 kPa, �	~ 35 µm and initial height � ~ 13 µm. Predicted shape for the PDMS and gel profile (continuous 

lines) using FEM analysis. (b) Measured reduction in gel height (ratio of deformed to initial height	?��/�) as a function of several 

elastic moduli (�) and periodic separations (�, symbols circles, triangles and inverted triangles represent, respectively, spacing 35, 

50 and 65 µm).  Least square fit of FEM results to experimental data yields an estimate of the surface stress as 130.0±21.5 mN/m.  
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solid mixture could result in surface stress that differs from 

what one would expect from a rule of mixtures. 

The confidence in the estimated surface stress values also 

depends on the accuracy and the precision of independently 

measured Young’s moduli of the gels. Two methods, beam 

bending and load-displacement measurements with a flat punch 

were employed to determine the modulus. Possible inaccuracy 

in the independent measurement of the modulus limits the 

accuracy of the presented surface tension data. 

 The periodic ridge geometry is relatively easy to fabricate 

and so may serve as model for determination of surface stress 

of compliant solids. For cases where patterned surfaces are 

shallow (�<<	�) the application of small strain elasticity theory 

successfully estimates the surface stress if the elastic properties 

of the gel are independently known.  For the more general case, 

we have shown how finite element analysis can be used to 

analyse arbitrary deformation driven by surface tension.   

 Arrays of parallel channels are often fabricated in 

applications such as microfluidics using replica molding.   Our 

work shows that when soft elastomer or gels are used in the 

fabrication, the shape of replica can be significantly different 

from the original mold.  The analysis in the work presents a 

methodology to characterize the shape of these replicas.   
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Supplementary information 

Determination of Young’s modulus 

 

a) Cylindrical Punch Indentation Experiment 

The purpose of this brief note is to put down the relations needed 

to extract Young’s modulus from a compliance measurement 

made by indenting a sample using a rigid cylindrical punch.  

  In the schematic figure S1, a circular cylindrical punch with 

radius a indents an elastic foundation that is very large in the 

plane of the contact, i.e., L>>a.  However, its thickness, h, may 

or may not be large compared to a. 

 

 In the limit when h>>a, we have indentation by a rigid 

circular punch of an elastic half space.  In this case 16,24,  

 

U6V
5/*→�

��X�Y � Z� � 	

-∗* [s1]  

 

where [ is the displacement of the indenter, \ is the measured 

load, Z� is the compliance in the limit h>>a or �/� → ∞, 

�∗ � �/?1 $ ^
A is the plane strain Young’s modulus, and ^ is 

Poisson’s ratio.  If the material is incompressible, then ^ � 1/2, 

and equation s1 becomes 

 

U6V
5/*→�

��X�Y � Z� � 	

-∗* � 	G_&


-* � �
`-* � 	

`a* [s2]  

 

where we have used the relation 	b � �/?2?1 � ^A). This is the 

same result as given in Long et al.16 (equations 24 a, b) who have 

additionally shown that for finite	�, the compliance	Z	can be 

written in terms of Z� in the following way: 

 
�X
�Y � Z � Z� � 	

	0c?dA ; e � *
5 [s3]  

 

f?eA � 	.�hid0	.�
j	d&0�.	%�	dk

�.hj	j   

 

So, since Z is the measured quantity, our expression for Young’s 

modulus is 

 

�∗ � 	

*l �

	
	0c?dA ; e � *

5 [s4]  

 

f?eA � 	.�hid0	.�
j	d&0�.	%�	dk

�.hj	j   

 

A typical load-displacement plot is shown in figure S2 

b) Beam bending 

The modulus was measured using the linear elastic moment-

curvature relationship of beam theory 

 

m � �Mn [s5]  

 

where m is the moment on the beam fixed at one end, M is the 

moment of inertia of the  rectangular cross-section of the beam 

and n is the curvature of the bent element. 

Equation (s5) can be re-written in terms of the distance � along 

the neutral axis of the beam 

 
o?9A
-p � �q

�9  [s6]  

 

Integrating eq. s6 

 

Sm?�A T� � �M S Tr [s7]   

 

That is, the integral of the moment is linearly related to change in 

angle, and the slope is EI. The integral of the moment is plotted 

as a function of the angle and from the slope the modulus is 

obtained (figure S3). 

Figure S1: Schematic of flat cylindrical punch with diameter 2a 

used to indent a gel block of height h and diameter L 
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Figure S2: Load measured as a function of indentation depth 

(Distance) in a typical contact compliance test. The compliance C is 

the inverse of the slope. 

Figure S3: (a) Picture of a gel beam fixed at one end and freely 

hanging on the other (scale bar ~ 1cm). The profile of the beam 

is read using MATLAB code for determination of the curvature. 

(b) Integral of moment versus angle plot. 
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Gel filling of PDMS 

We re-confirmed the assumption that the liquid gel wets the 

PDMS master completely. A section of the PDMS master was cut 

and laid flush on the bottom of the petri-dish such that the ridges 

were orientated perpendicular to it. After filling and gelation 

images were taken through the transparent base of the petri-dish. 

Figure S4 shows the optical micrographs of gel filled PDMS 

master. 

 

High ridge geometry height reductions 

In the experimental results part of the main text we noted the 

variation of the ratio of deformed to initial height for the high 

ridge geometry.  Figure S5 shows the absolute heights of the 

PDMS and the deformed gel samples for the ridge geometry with 

h~ 13 µm. A lower deformed height (ht) was measured for a gel 

with lower modulus (E).  

 

FEM analysis for low height ridge geometry (v~ 2.7 µm) 

To test the validity of the small strain theory, we applied also 

applied the FEM analysis to the case of shallow ridges for which 

small strain theory satisfactorily predicted the full deformed 

profile of the gel after demolding. Figure S6 shows that the least 

square fitting results of FEM analysis to experimental data yield a 

surface tension  � of 105.0±17.6 mN/m which quite similar to 

that obtained from the small strain theory (�= 100.0±9.4 mN/m). 

 

FEM analysis: Validity of neo-Hookean model 

We applied an alternate model to the neo-Hookean to ascertain its 

validity. The linear elastic model was used to estimate the 

deformed heights (figure S6). We observe that for the surface 

tension of approx. 110 mN/m, which is close to estimated surface 

stress for low strain case, the two models deviate by less than 8% 

(figure S7). Thus there are limitations to the application of our 

technique to estimate surface stress using large deformations. 

                            

Figure S4: Optical mircographs (scale bar 100 µm) of gel (� ~ 

23 kPa) filled PDMS master prior to molding for periodic ridge 

geometry (a) � ~ 13 µm, � ~ 35 µm and (a) � ~ 2.7 µm, � ~ 25 

µm .  
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Figure S5: Measured initial height of ridge/channel in PDMS � 

~ 13 µm (square symbols) and the corresponding gel height (��) 

for three different periodic spacing � (symbols circles, triangles 

and inverted triangles represent, respectively, spacing of � ~ 35, 

50 and 65 µm, see Table 1 ( � � � � �) and five different 

moduli (�). 

Figure S6: Measured reduction in gel height (ratio of final to 

initial height �/��) and FEM analysis based least square fits 

(continuous lines)  for the height reduction as a function of 

varying elastic moduli � and three different periods � 

(symbols circles, triangles and inverted triangles 
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Figure S7: Comparison of deformed heights for a given 

surface tension for the neo-Hookean versus linear elastic 

material models. 
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