Issue 10, 2014

1,3-γ-Silyl-elimination in electron-deficient cationic systems

Abstract

Placement of an electron-withdrawing trifluoromethyl group (–CF3) at a putative cationic centre enhances γ-silyl neighbouring-group participation (NGP). In stark contrast to previously studied γ-silyl-substituted systems, the preferred reaction pathway is 1,3-γ-silyl elimination, giving ring closure over solvent substitution or alkene formation. The scope of this cyclopropanation reaction is explored for numerous cyclic and acyclic examples, proving this method to be a viable approach to preparing CF3-substituted cyclopropanes and bicyclic systems, both containing quaternary centres. Rate-constants, kinetic isotope effects, and quantum mechanical calculations provided evidence for this enhancement and further elaborated the disparity in the reaction outcome between these systems and previously studied γ-silyl systems.

Graphical abstract: 1,3-γ-Silyl-elimination in electron-deficient cationic systems

Supplementary files

Article information

Article type
Edge Article
Submitted
11 Jun 2014
Accepted
23 Jun 2014
First published
03 Jul 2014

Chem. Sci., 2014,5, 3983-3994

1,3-γ-Silyl-elimination in electron-deficient cationic systems

M. A. Mercadante, C. B. Kelly, T. A. Hamlin, K. R. Delle Chiaie, M. D. Drago, K. K. Duffy, M. T. Dumas, D. C. Fager, B. L. C. Glod, K. E. Hansen, C. R. Hill, R. M. Leising, C. L. Lynes, A. E. MacInnis, M. R. McGohey, S. A. Murray, M. C. Piquette, S. L. Roy, R. M. Smith, K. R. Sullivan, B. H. Truong, K. M. Vailonis, V. Gorbatyuk, N. E. Leadbeater and L. J. Tilley, Chem. Sci., 2014, 5, 3983 DOI: 10.1039/C4SC01732C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements