Issue 11, 2014

Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation

Abstract

A practical, commercially viable microfluidic device relies upon the miniaturization and integration of all its components—including pumps, circuitry, and power supply—onto a chip-based platform. Surface acoustic waves (SAW) have become popular in microfluidic manipulation, in solving the problems of microfluidic manipulation, but practical applications employing SAW still require more power than available via a battery. Introducing amplitude modulation at 0.5–40 kHz in SAW nebulization, which requires the highest energy input levels of all known SAW microfluidic processes, halves the power required to 1.5 W even while including the power in the sidebands, suitable for small lithium ion batteries, and maintains the nebulization rate, size, and size distributions vital to drug inhalation therapeutics. This simple yet effective means to enable an integrated SAW microfluidics device for nebulization exploits the relatively slow hydrodynamics and is furthermore shown to deliver shear-sensitive biomolecules—plasmid DNA and antibodies as exemplars of future pulmonary gene and vaccination therapies—undamaged in the nebulized mist. Altogether, the approach demonstrates a means to offer truly micro-scale microfluidics devices in a handheld, battery powered SAW nebulization device.

Graphical abstract: Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation

Article information

Article type
Paper
Submitted
22 Feb 2014
Accepted
28 Mar 2014
First published
28 Mar 2014

Lab Chip, 2014,14, 1858-1865

Author version available

Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation

A. Rajapaksa, A. Qi, L. Y. Yeo, R. Coppel and J. R. Friend, Lab Chip, 2014, 14, 1858 DOI: 10.1039/C4LC00232F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements