Issue 4, 2014

Probing for DNA methylation with a voltammetric DNA detector

Abstract

A label-free electrochemical detection of DNA hybridization is used for probing synthetic methylated ssDNA 27-mer or 33-mer targets from the GSTP1-gene. The method is based on electrostatic modulation of the anion-exchange kinetics of a polypyrrole bilayer film deposited on platinum-microelectrodes to which a synthetic single-stranded 15-mer GSTP-1 promoter probe DNA has been attached (DNA detector). The effect of the contact of this DNA-detector with non-methylated and methylated complementary DNA sequences in Tris-buffer is compared using cyclic voltammetry (CV). The DNA-hybridization taking place at the electrode surface leads to a significant decrease of the CV area recorded after exposure to complementary target DNA in comparison to the CV change recorded for non-complementary DNA target. The performance of this miniaturized DNA detector was optimized with respect to hybridization time, temperature, and concentration of the target. It was also evaluated with respect to selectivity, sensitivity, and reproducibility. These results are significant for their possible use as a screening test for hypermethylated DNA sequences.

Graphical abstract: Probing for DNA methylation with a voltammetric DNA detector

Article information

Article type
Paper
Submitted
20 Nov 2013
Accepted
04 Dec 2013
First published
04 Dec 2013

Analyst, 2014,139, 786-792

Author version available

Probing for DNA methylation with a voltammetric DNA detector

A. Saheb, S. Patterson and M. Josowicz, Analyst, 2014, 139, 786 DOI: 10.1039/C3AN02154H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements