Jump to main content
Jump to site search

Issue 12, 2014
Previous Article Next Article

Photon upconversion sensitized nanoprobes for sensing and imaging of pH

Author affiliations

Abstract

Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an upconverting nanoparticle (UCNP) and a fluorogenic pH-dependent dye pHrodo™ Red that was covalently bound to the aminosilane surface of the nanoparticles. The sensitized fluorescence of the pHrodo™ Red dye increases strongly with decreasing pH. By referencing the pH-dependent emission of pHrodo™ Red with the pH-insensitive upconversion photoluminescence of the UCNP, we developed a pH-sensor which exhibits a dynamic range from pH 7.2 to 2.5. The applicability of the introduced pH nanosensor for pH imaging was demonstrated by imaging the two emission wavelengths of the nanoprobe in living HeLa cells with a confocal fluorescence microscope upon 980 nm excitation. This demonstrates that the presented pH-nanoprobe can be used as an intracellular pH-sensor due to the unique features of UCNPs: excitation with deeply penetrating near-infrared light, high photostability, lack of autofluorescence and biocompatibility due to an aminosilane coating.

Graphical abstract: Photon upconversion sensitized nanoprobes for sensing and imaging of pH

Back to tab navigation

Supplementary files

Article information


Submitted
23 Jan 2014
Accepted
24 Apr 2014
First published
29 Apr 2014

Nanoscale, 2014,6, 6837-6843
Article type
Paper
Author version available

Photon upconversion sensitized nanoprobes for sensing and imaging of pH

R. Arppe, T. Näreoja, S. Nylund, L. Mattsson, S. Koho, J. M. Rosenholm, T. Soukka and M. Schäferling, Nanoscale, 2014, 6, 6837 DOI: 10.1039/C4NR00461B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements