Jump to main content
Jump to site search

Issue 40, 2014
Previous Article Next Article

Optical excitation of MgO nanoparticles; a computational perspective

Author affiliations

Abstract

The optical absorption spectra of magnesium oxide (MgO) nanoparticles, along with the atomic centres responsible, are studied using a combination of time-dependent density functional theory (TD-DFT) and coupled-cluster methods. We demonstrate that TD-DFT calculations on MgO nanoparticles require the use of range-separated exchange–correlation (XC-) functionals or hybrid XC-functionals with a high percentage of Hartree–Fock like exchange to circumvent problems related to the description of charge-transfer excitations. Furthermore, we show that the vertical excitations responsible for the experimentally studied range of the spectra of the MgO nanoparticles typically involve both 3-coordinated corner sites and 4-coordinated edge sites. We argue therefore that to label peaks in these absorption spectra exclusively as either corner or edge features does not provide insight into the full physical picture.

Graphical abstract: Optical excitation of MgO nanoparticles; a computational perspective

Back to tab navigation

Supplementary files

Article information


Submitted
01 Aug 2014
Accepted
28 Aug 2014
First published
28 Aug 2014

This article is Open Access

Phys. Chem. Chem. Phys., 2014,16, 22052-22061
Article type
Paper
Author version available

Optical excitation of MgO nanoparticles; a computational perspective

M. C. C. Wobbe, A. Kerridge and M. A. Zwijnenburg, Phys. Chem. Chem. Phys., 2014, 16, 22052
DOI: 10.1039/C4CP03442B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements