Issue 4, 2019

Metal-catalyzed cross-coupling chemistry with polyhedral boranes

Abstract

Over the past several decades, metal-catalyzed cross-coupling has emerged as a very powerful strategy to functionalize carbon-based molecules. More recently, some of the cross-coupling methodologies have been adapted to inorganic compounds including boron-rich clusters. The development of this chemistry relies on the ability to synthesize halogenated boron-rich clusters which can serve as electrophilic cross-coupling partners with nucleophilic substrates in the presence of a metal catalyst. While the cross-coupling chemistry with boron-clusters is conceptually reminiscent of that of its hydrocarbon counterparts, several key aspects including the spheroidal bulk of clusters and the distinct nature of boron–halogen/boron–heteroatom bonds make this chemistry unique. The utility of metal-catalyzed cross-coupling can be extended to several classes of polyhedral boranes including neutral and anionic carboranes, metallaboranes, and carbon-free boranes. Importantly, cross-coupling enables a suite of boron–heteroatom (C, N, O, P, S) couplings to prepare boron cluster-based systems that can be used for ligand design, medicinal chemistry, and materials applications.

Graphical abstract: Metal-catalyzed cross-coupling chemistry with polyhedral boranes

Article information

Article type
Feature Article
Submitted
31 Oct 2018
Accepted
28 Nov 2018
First published
28 Nov 2018

Chem. Commun., 2019,55, 430-442

Author version available

Metal-catalyzed cross-coupling chemistry with polyhedral boranes

R. M. Dziedzic and A. M. Spokoyny, Chem. Commun., 2019, 55, 430 DOI: 10.1039/C8CC08693A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements