Jump to main content
Jump to site search

Issue 27, 2013
Previous Article Next Article

Theranostic magnetic nanoparticles for efficient capture and in situ chemotherapy of circulating tumor cells

Author affiliations

Abstract

Cancer is considered to be the leading factor which threatens human lives nowadays, and 90% of cancer-related deaths are attributed to the metastasis of cancer. Thus an effective and simultaneous separation and therapeutic method for circulating tumor cells is crucial for improving the diagnosis, prognosis, and treatment of cancer. Here, we report the design of theranostic magnetic nanoparticles conjugated with the targeting peptide SP94 and the anticancer drug doxorubicin (DOX) (symbolized as Fe3O4–DOX/SP94) for the targeted isolation of the human hepatocellular carcinoma cell line (HepG2), followed by the in situ chemotherapy of cancer cells upon capture. It was found that the capture efficiencies of 400 μg Fe3O4–DOX/SP94 for HepG2 cells and human embryonic kidney transformed 293 cells (293T) were around 75% and 5% respectively after 15 min incubation. Furthermore, it is worth mentioning that DOX was covalently conjugated via pH-sensitive hydrazone bonds, and the in vitro release studies demonstrated that DOX was released much faster at pH 5.0 than at pH 7.4. According to the in vitro cytotoxicity assays, significantly reduced cell viability was observed in HepG2 cells when the concentration of Fe3O4–DOX/SP94 nanoparticles was 300 μg mL−1. Such a rapid and facile approach has considerable potential for the targeted capture as well as effective chemotherapy of circulating tumor cells, in an attempt to improve the curative effects against metastatic diseases.

Graphical abstract: Theranostic magnetic nanoparticles for efficient capture and in situ chemotherapy of circulating tumor cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Apr 2013, accepted on 09 May 2013 and first published on 09 May 2013


Article type: Paper
DOI: 10.1039/C3TB20509F
J. Mater. Chem. B, 2013,1, 3344-3352

  •   Request permissions

    Theranostic magnetic nanoparticles for efficient capture and in situ chemotherapy of circulating tumor cells

    Y. Wang, H. Jia, K. Han, R. Zhuo and X. Zhang, J. Mater. Chem. B, 2013, 1, 3344
    DOI: 10.1039/C3TB20509F

Search articles by author

Spotlight

Advertisements