Issue 34, 2013

Limitations and high pressure behavior of MOF-5 for CO2 capture

Abstract

Porous network structures (e.g. metal–organic frameworks, MOFs) show considerable potential in dethroning monoethanol amine (MEA) from being the dominant scrubber for CO2 at the fossil-fuel-burning power generators. In contrast to their promise, structural stability and high-pressure behavior of MOFs are not well documented. We herein report moisture stability, mechanical properties and high-pressure compression on a model MOF structure, MOF-5. Our results show that MOF-5 can endure all tested pressures (0–225 bar) without losing its structural integrity, however, its moist air stability points at a 3.5 hour safety window (at 21.6 °C and 49% humidity) for an efficient CO2 capture. Isosteric heats of CO2 adsorption at high pressures show moderate interaction energy between CO2 molecules and the MOF-5 sorbent, which combined with the large sorption ability of MOF-5 in the studied pressure–temperature ranges show the viability of this sorbent for CO2 capturing purposes. The combination of the physicochemical methods we used suggests a generalized analytical standard for measuring viability in CO2 capture operations.

Graphical abstract: Limitations and high pressure behavior of MOF-5 for CO2 capture

Article information

Article type
Paper
Submitted
25 Apr 2013
Accepted
27 Jun 2013
First published
02 Jul 2013

Phys. Chem. Chem. Phys., 2013,15, 14319-14327

Limitations and high pressure behavior of MOF-5 for CO2 capture

J. Y. Jung, F. Karadas, S. Zulfiqar, E. Deniz, S. Aparicio, M. Atilhan, C. T. Yavuz and S. M. Han, Phys. Chem. Chem. Phys., 2013, 15, 14319 DOI: 10.1039/C3CP51768C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements