Issue 29, 2012

Cα–Cβchromophore bond dissociation in protonated tyrosine-methionine, methionine-tyrosine, tryptophan-methionine, methionine-tryptophan and their sulfoxide analogs

Abstract

Cα–Cβ chromophore bond dissociation in some selected methionine-containing dipeptides induced by UV photons is investigated. In methionine containing dipeptides with tryptophan as the UV chromophore, the tryptophan side chain is ejected either as an ion or as a neutral fragment while in dipeptides with tyrosine, the tyrosine side chain is lost only as a neutral fragment. Mechanisms responsible for these fragmentations are proposed based on measured branching ratios and fragmentation times, and on the results of DFT/B3-LYP calculations. It appears that the Cα–Cβ bond cleavage is a non-statistical dissociation for the peptides containing tyrosine, and occurs after internal conversion for those with tryptophan. The proposed mechanisms are governed by the ionization potential of the aromatic side chain compared to that of the rest of the molecule, and by the proton affinity of the aromatic side chain compared to that of the methionine side chain. In tyrosine-containing peptides, the presence of oxygen on sulfur of methionine presumably reduces the ionization potential of the peptide backbone, facilitating the loss of the side chain as a neutral fragment. In tryptophan-containing peptides, the presence of oxygen on methionyl-sulfur expedites the transfer of the proton from the side chain to the sulfoxide, which facilitates the loss of the neutral side chain.

Graphical abstract: Cα–Cβ chromophore bond dissociation in protonated tyrosine-methionine, methionine-tyrosine, tryptophan-methionine, methionine-tryptophan and their sulfoxide analogs

Article information

Article type
Paper
Submitted
11 Mar 2012
Accepted
08 May 2012
First published
08 May 2012

Phys. Chem. Chem. Phys., 2012,14, 10225-10232

Cα–Cβ chromophore bond dissociation in protonated tyrosine-methionine, methionine-tyrosine, tryptophan-methionine, methionine-tryptophan and their sulfoxide analogs

S. S. Kumar, B. Lucas, S. Soorkia, M. Barat and J. A. Fayeton, Phys. Chem. Chem. Phys., 2012, 14, 10225 DOI: 10.1039/C2CP40773F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements