Issue 12, 2011

On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations

Abstract

This paper presents an innovative driving method for an on-chip robot actuated by permanent magnets in a microfluidic chip. A piezoelectric ceramic is applied to induce ultrasonic vibration to the microfluidic chip and the high-frequency vibration reduces the effective friction on the MMT significantly. As a result, we achieved 1.1 micrometre positioning accuracy of the microrobot, which is 100 times higher accuracy than without vibration. The response speed is also improved and the microrobot can be actuated with a speed of 5.5 mm s−1 in 3 degrees of freedom. The novelty of the ultrasonic vibration appears in the output force as well. Contrary to the reduction of friction on the microrobot, the output force increased twice as much by the ultrasonic vibration. Using this high accuracy, high speed, and high power microrobot, swine oocyte manipulations are presented in a microfluidic chip.

Graphical abstract: On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2011
Accepted
13 Apr 2011
First published
12 May 2011

Lab Chip, 2011,11, 2049-2054

On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations

M. Hagiwara, T. Kawahara, Y. Yamanishi, T. Masuda, L. Feng and F. Arai, Lab Chip, 2011, 11, 2049 DOI: 10.1039/C1LC20164F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements