Issue 6, 2011

A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules

Abstract

Inspired by the game of “pinball” where rolling metal balls are guided by obstacles, here we describe a novel microfluidic technique which utilizes micropillars in a flow channel to continuously generate, encapsulate and guide Layer-by-Layer (LbL) polyelectrolyte microcapsules. Droplet-based microfluidic techniques were exploited to generate oil droplets which were smoothly guided along a row of micropillars to repeatedly travel through three parallel laminar streams consisting of two polymers and a washing solution. Devices were prototyped in PDMS and generated highly monodisperse and stable 45 ± 2 µm sized polyelectrolyte microcapsules. A total of six layers of hydrogen bonded polyelectrolytes (3 bi-layers) were adsorbed on each droplet within <3 minutes and a fluorescent intensity measurement confirmed polymer film deposition. AFM analysis revealed the thickness of each polymer layer to be approx. 2.8 nm. Our design approach not only provides a faster and more efficient alternative to conventional LbL deposition techniques, but also achieves the highest number of polyelectrolyte multilayers (PEMs) reported thus far using microfluidics. Additionally, with our design, a larger number of PEMs can be deposited without adding any extra operational or interfacial complexities (e.g. syringe pumps) which are a necessity in most other designs. Based on the aforementioned advantages of our device, it may be developed into a great tool for drug encapsulation, or to create capsules for biosensing where deposition of thin nanofilms with controlled interfacial properties is highly required.

Graphical abstract: A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules

Supplementary files

Article information

Article type
Paper
Submitted
06 Sep 2010
Accepted
25 Nov 2010
First published
07 Jan 2011

Lab Chip, 2011,11, 1030-1035

A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules

C. Kantak, S. Beyer, L. Yobas, T. Bansal and D. Trau, Lab Chip, 2011, 11, 1030 DOI: 10.1039/C0LC00381F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements