Issue 9, 2011

Releasing 17.8 wt% H2 from lithium borohydride ammoniate

Abstract

Release of ca. 17.8 wt% of hydrogen was observed from the Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 (with equivalent protic and hydridic hydrogen atoms, composed of solid Li(NH3)BH4 and liquid Li(NH3)2BH4), in the temperature range of 135 to 250 °C in a closed vessel. The low NH3 equilibrium vapor pressure of the ammoniate in the vessel results in the retention of the majority of NH3 in the vicinity of LiBH4, and thus, creates an environment favorable for the direct dehydrogenation rather than deammoniation. The dehydrogenation is a two-step process forming the intermediates Li4BN3H10 and LiBH4. The final solid residue is a mixture of BN and Li3BN2. The presence of nanosized Co catalyst effectively promote the hydrogen release.

Graphical abstract: Releasing 17.8 wt% H2 from lithium borohydride ammoniate

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2011
Accepted
29 Jun 2011
First published
04 Aug 2011

Energy Environ. Sci., 2011,4, 3593-3600

Releasing 17.8 wt% H2 from lithium borohydride ammoniate

X. Zheng, G. Wu, W. Li, Z. Xiong, T. He, J. Guo, H. Chen and P. Chen, Energy Environ. Sci., 2011, 4, 3593 DOI: 10.1039/C1EE01480C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements