Jump to main content
Jump to site search

Issue 1, 2010
Previous Article Next Article

Biomimetic supported membranes from amphiphilic block copolymers

Author affiliations

Abstract

A unique combination of surface chemistry and self-assembly of amphiphilic block copolymers was employed to obtain—for the first time—solid-supported biomimetic polymer bilayers. An organized monolayer from sulfur-functionalized poly(butadiene)-b-poly(ethylene oxide) was covalently attached to ultrasmooth gold upon Langmuir-Blodgett transfer. Hydrophobic interactions, on the other hand, were exploited to attach the second monolayer. As a result, we obtained a homogeneous hydrophilic-hydrophobic-hydrophilic structure, similar to supported lipid bilayers by architecture, stability and fluidity. Our polymer bilayers, however, outperform such lipid membranes with regard to tunability of thickness and stability in gaseous environments.

As characterized by surface analysis tools (AFM, SPR), solid-supported polymer membranes are smooth with a thickness of ca. 11 nm, resistant to rinsing with aqueous solutions and stable upon drying and rehydration. These properties could be attractive for nanotechnological applications, such as immobilization of functional molecules or nanoparticles, sensor development or preparation of chemically responsive functional surfaces.

Graphical abstract: Biomimetic supported membranes from amphiphilic block copolymers

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Aug 2009, accepted on 02 Oct 2009 and first published on 04 Nov 2009


Article type: Paper
DOI: 10.1039/B917318H
Citation: Soft Matter, 2010,6, 179-186
  •   Request permissions

    Biomimetic supported membranes from amphiphilic block copolymers

    S. Belegrinou, J. Dorn, M. Kreiter, K. Kita-Tokarczyk, E. Sinner and W. Meier, Soft Matter, 2010, 6, 179
    DOI: 10.1039/B917318H

Search articles by author

Spotlight

Advertisements