Issue 1, 2010

Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes

Abstract

Supramolecular hydrogels are highly interesting for drug delivery and tissue engineering applications, especially those systems that display a combination of tunable properties, high mechanical strength and easy preparation from well-available and biocompatible building blocks. In the present paper, we show that the combination of free β-cyclodextrin (βCD) and 8-arm or linear cholesterol-derivatized poly(ethylene glycol) (PEG–chol) in aqueous solution resulted in the formation of almost fully elastic gels with storage moduli in the range of 10–500 kPa. X-Ray diffraction measurements demonstrated the presence of crystalline βCD domains in the hydrogel networks. Rheological experiments further proved that hydrogel formation is based on inclusion complex formation between these βCD clusters and cholesterol coupled to the terminal end of PEG. The observation that the gels were weakened by addition of the competitive βCD–guest molecule adamantanecarboxylic acid (ACA) supported the proposed gelation mechanism. The gel mechanical properties were dependent on temperature, concentration of cholesterol-derivatized PEG and/or βCD, PEG's molecular weight and its architecture. This hydrogel system can be considered as an excellent candidate for future applications in the biomedical and pharmaceutical fields.

Graphical abstract: Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2009
Accepted
25 Sep 2009
First published
03 Nov 2009

Soft Matter, 2010,6, 187-194

Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes

F. van de Manakker, L. M. J. Kroon-Batenburg, T. Vermonden, C. F. van Nostrum and W. E. Hennink, Soft Matter, 2010, 6, 187 DOI: 10.1039/B916378F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements