Jump to main content
Jump to site search

Issue 8, 2010
Previous Article Next Article

Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins

Author affiliations

Abstract

Peptides are known to play many important physiological roles in signaling. A large number of peptides have been detected in mouse brain extracts using mass spectrometry-based peptidomics studies, and 850 peptides have been identified. Half of these peptides are derived from secretory pathway proteins and many are known bioactive neuropeptides which activate G protein-coupled receptors; these are termed “classical neuropeptides”. In addition, 427 peptides were identified that are derived from non-secretory pathway proteins; the majority are cystosolic, and the remainder are mitochondrial, nuclear, lysosomal, or membrane proteins. Many of these peptides represent the N- or C-terminus of the protein, rather than internal fragments, raising the possibility that they are formed by selective processing rather than protein degradation. In addition to consideration of the cleavage site required to generate the intracellular peptides, their potential functions are discussed. Several of the cytosolic peptides were previously found to interact with receptors and/or otherwise influence cellular activity; examples include hemorphins, hemopressins, diazepam binding inhibitor, and hippocampal cholinergic neurostimulating peptide. The possibility that these peptides are secreted from cells and function in cellcell signaling is discussed. If these intracellular peptides can be shown to be secreted in levels sufficient to produce a biological effect, they would appropriately be called “non-classical neuropeptides” by analogy with non-classical neurotransmitters such as nitric oxide and anandamide. It is also possible that intracellular peptides function as “microproteins” and modulate proteinprotein interactions; evidence for this function is discussed, along with future directions that are needed to establish this and other possible functions for peptides.

Graphical abstract: Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Feb 2010, accepted on 07 Apr 2010 and first published on 28 Apr 2010


Article type: Review Article
DOI: 10.1039/C003317K
Mol. BioSyst., 2010,6, 1355-1365

  •   Request permissions

    Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins

    L. D. Fricker, Mol. BioSyst., 2010, 6, 1355
    DOI: 10.1039/C003317K

Search articles by author

Spotlight

Advertisements