Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2008

Understanding organofluorine chemistry. An introduction to the C–F bond

Author affiliations

Abstract

Fluorine is the most electronegative element in the periodic table. When bound to carbon it forms the strongest bonds in organic chemistry and this makes fluorine substitution attractive for the development of pharmaceuticals and a wide range of speciality materials. Although highly polarised, the C–F bond gains stability from the resultant electrostatic attraction between the polarised Cδ+ and Fδ– atoms. This polarity suppresses lone pair donation from fluorine and in general fluorine is a weak coordinator. However, the C–F bond has interesting properties which can be understood either in terms of electrostatic/dipole interactions or by considering stereoelectronic interactions with neighbouring bonds or lone pairs. In this tutorial review these fundamental aspects of the C–F bond are explored to rationalise the geometry, conformation and reactivity of individual organofluorine compounds.

Graphical abstract: Understanding organofluorine chemistry. An introduction to the C–F bond

Article information


Submitted
01 Aug 2007
First published
17 Oct 2007

Chem. Soc. Rev., 2008,37, 308-319
Article type
Tutorial Review

Understanding organofluorine chemistry. An introduction to the C–F bond

D. O'Hagan, Chem. Soc. Rev., 2008, 37, 308 DOI: 10.1039/B711844A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements