Probing the proton exchange kinetics of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ ceramic electrolyte by operando diffuse reflectance infrared Fourier transform spectroscopy

Abstract

Proton exchange kinetics plays an important role in governing the performance of intermediate-temperature protonic ceramic electrolysis cells (PCECs) for hydrogen production. Our understanding of the nature of the surface hydration reaction at the single-cell level, however, remains very limited, hampering further efficiency improvements. Here, we developed a custom operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) platform that operates under high temperature and steam conditions with applied bias. Quantitative investigations of surface H2O/D2O isotope exchange in a BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb1711) protonic electrolyte-based single cell were conducted under different applied voltages using this DRIFTS platform, to gain molecular-level insight into hydration kinetics. The findings show that the application of an external voltage significantly enhances the surface proton exchange rate, decreasing the apparent activation energy from 29.1 kJ mol−1 at open-circuit voltage (OCV) to 6.8 kJ mol−1 at 1.3 V. In addition, distinct voltage-induced spectral shifts in O–D vibrations point to dynamic changes in surface hydration. These findings demonstrate a sensitive spectroscopic platform for probing interfacial proton processes and reveal strong electrochemical control over surface proton kinetics, offering new opportunities for probing electrolyte hydration behavior in PCECs.

Graphical abstract: Probing the proton exchange kinetics of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ ceramic electrolyte by operando diffuse reflectance infrared Fourier transform spectroscopy

Supplementary files

Article information

Article type
Communication
Submitted
09 Oct 2025
Accepted
26 Nov 2025
First published
12 Dec 2025

Energy Environ. Sci., 2026, Advance Article

Probing the proton exchange kinetics of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ ceramic electrolyte by operando diffuse reflectance infrared Fourier transform spectroscopy

Y. Meng, F. Liu, M. Li, Z. Wang, H. Deng, Q. Zhang, H. Li, W. Wang, Q. Sun, J. Gomez, Z. Zhao, H. Zhao and D. Ding, Energy Environ. Sci., 2026, Advance Article , DOI: 10.1039/D5EE05957G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements