Importance of surface peroxo species in the epoxidation of cyclohexene by Mo-doped TS-1 and O2 under solvent-free conditions
Abstract
The selective oxidation of cyclohexene (Cy) to cyclohexene oxide (Cy-ep) using O2 remains challenging due to low epoxidation selectivity. In this work, a series of Mo-doped TS-1 (Mo-TS-1) catalysts were successfully synthesized for the epoxidation of Cy under solvent- and initiator-free conditions with O2 as the oxidant. Among them, 5Mo-TS-1 exhibited high catalytic performance, achieving 43.5% Cy conversion and 50.6% selectivity toward Cy-ep. Additionally, valuable by-products such as 2-cyclohexen-1-ol (Cy-ol) and 2-cyclohexen-1-one (Cy-one) were obtained with yields of 28.0% and 21.4%, respectively. Since both Cy-ol and Cy-one are valuable intermediates in fragrance synthesis, over 43.5% of Cy was effectively converted into high-value products. Quenching experiments and Raman spectroscopy revealed that surface oxygen vacancies (Ov) facilitate the activation of O2 to form
Ov-superoxo species, which abstract hydrogen from the allylic C–H bond of Cy to generate 3-cyclohexenyl radicals (Cy·). These radicals subsequently react with O2 to form Cy–OO·, followed by hydrogen abstraction from another Cy molecule to yield 2-cyclohexene-1-hydroperoxide (Cy–OOH). A positive correlation between Cy–OOH and Cy-ep formation underscores the critical role of Cy–OOH in the epoxidation process. Furthermore, Raman spectroscopy confirmed the presence of
Mo-(η2-O2) peroxo species on the catalyst surface, which preferentially attack the C
C bond of Cy to form Cy-ep. DFT calculations elucidated two distinct O2 activation pathways: in pathway I, O2 is activated at Ov sites to form
Ov-superoxo, which subsequently reacts with Cy to generate
Ov-peroxo, Cy–OOH, and Cy·. In pathway II, Mo(V/VI) sites either directly activate O2 or react with peroxo intermediates (
Ov-peroxo or Cy–OOH) to form
Mo-(η2-O2). This species selectively epoxidizes the alkene bond in Cy to Cy-ep. Notably, the direct activation of O2 at Mo(V/VI) sites bypasses the allylic oxidation route, thereby enhancing the epoxidation selectivity beyond the theoretical limit of 50.0%. This study provides new insight on the importance of surface superoxo and peroxo mediated by Ov and Mo(V/VI) in the epoxidation processes.

Please wait while we load your content...