Symbiotic energy-sensing wind generator enabled AI for smart roads

Abstract

Various monitoring devices have been installed on roads to capture traffic conditions, with electricity being essential for the operation of these devices. To reduce reliance on traditional power sources, this paper proposes a symbiotic energy-sensing dual wind cup triboelectric electromagnetic hybrid generator (DW-TEHG). Its dual wind cup enhancement mechanism (EM) converts wind energy into kinetic energy, which drives the electromagnetic generator (EMG) to operate efficiently. The wind speed monitoring unit perceives wind speed through voltage output, while an energy management unit is responsible for energy storage and power supply to sensing devices. Experiments have optimized the matching parameters of the dual wind cups, enhancing the output capability by 153% compared to a single wind-cup design. Additionally, at a wind speed of 5 m s−1, the DW-TEHG can achieve a maximum output power of 92.48 mW, capable of charging a 0.1 F capacitor to 12 V. Furthermore, wind speed monitoring based on artificial intelligence (AI) is implemented, with an average recognition rate of 99.85%. Combined with digital twin technology and 5G communication, it enables visual environmental monitoring. These results demonstrate the huge potential of the DW-TEHG for road applications that can contribute to the development of smart transportation.

Graphical abstract: Symbiotic energy-sensing wind generator enabled AI for smart roads

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2025
Accepted
10 Jun 2025
First published
24 Jun 2025

Sustainable Energy Fuels, 2025, Advance Article

Symbiotic energy-sensing wind generator enabled AI for smart roads

K. Wu, C. Fan, M. Tang, H. Chen, Y. Pan, D. Luo and Z. Zhang, Sustainable Energy Fuels, 2025, Advance Article , DOI: 10.1039/D5SE00510H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements