Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Exploring marine glycans: structure, function, and the frontier of chemical synthesis

Sandhya Mardhekar a, Phuong Luong a and Peter H. Seeberger *ab
aDepartment of Biomolecular System, Max Planck Institute for Colloids and Interfaces, Am Muhlenberg 1, 14476 Potsdam, Germany. E-mail: peter.seeberger@mpikg.mpg.de
bInstitute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany

Received 15th April 2025 , Accepted 4th June 2025

First published on 4th June 2025


Abstract

Marine glycans are structurally diverse biomolecules that play pivotal roles in oceanic carbon cycling by regulating microbial metabolism, accelerating organic matter turnover, and contribute to carbon sequestration. Glycans originating from marine organisms exhibit a wide range of bioactivities and applications in medicine, biotechnology, cosmetics, food and agriculture. The structural complexity of glycans poses significant challenges in understanding their functions, as traditional purification and characterization methods are often hindered by their inherent heterogeneity. To overcome these challenges, enzymatic extraction using glycoside hydrolases and carbohydrate-active enzymes (CAZymes) enables the selective recovery of native glycans, while automated glycan assembly (AGA) provides a robust approach for the rapid and reproducible synthesis of structurally defined glycans. Subjecting synthetic glycans to enzymatic degradation enables researchers to explore the inverse relationship between glycan complexity and microbial degradation, suggesting that algae can generate complex glycans at a rate exceeding bacterial decomposition, thereby reinforcing carbon storage. Here, we present a comprehensive overview of marine glycan sources and their structural diversity. We highlight the importance of employing two complementary methods, enzymatic extraction as a critical tool for glycan identification and AGA as an advanced synthetic platform, to build a refined framework for elucidating the ecological role and industrial potential of marine glycans.


image file: d5cb00090d-p1.tif

Sandhya Mardhekar

Sandhya Mardhekar received her Master's degree in Chemistry from Savitribai Phule Pune University, India. In 2023, she obtained her PhD in Biochemistry from the Indian Institute of Science Education and Research (IISER) Pune. Since 2023, she has been a postdoctoral fellow at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany.

image file: d5cb00090d-p2.tif

Phuong Luong

Phuong Luong studied Biochemistry at Bowdoin College, USA, and obtained her Bachelor's degree in 2022. Since then, she has been pursuing a PhD in Chemistry at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany.

image file: d5cb00090d-p3.tif

Peter H. Seeberger

Peter Seeberger completed his Bachelor's studies in Chemistry at the University of Erlangen Nuremberg, Germany, and earned a PhD in Biochemistry in Boulder, USA. He carried out postdoctoral research at the Sloan-Kettering Cancer Centre Research in New York. Subsequently, he held positions as an Associate Professor at MIT and a Full Professor at ETH Zürich. Since 2009, he has been a Director at the Max Planck Institute of Colloids and Interfaces in Potsdam and a Professor at Freie Universität Berlin. In 2023, he founded the Center for the Transformation of Chemistry (CTC).


1. Introduction

The ocean fixes approximately 50 gigatons of carbon each year, making it the Earth's most important carbon reservoir.1 This immense carbon storage is regulated by the marine carbon cycle, a crucial process that maintains the global carbon balance. Central to this cycle are glycans, or complex polysaccharides that fuel carbon fixation and transfer. Microscopic planktonic algae, such as diatoms, capture carbon dioxide from the atmosphere at the ocean's surface and convert it into organic matter in the form of glycans.2,3 These glycans provide structural integrity to the algal cell walls4,5 and are subsequently circulated through the marine food web as organisms consume algae and other plankton. When marine organisms die, their remains form sinking particles that release glycans into the environment. While these glycans are typically degraded by deep-sea microbes, many are resistant to decomposition and remain sequestered in the ocean floor for up to centuries.6,7

Beyond their ecological importance, marine glycans have diverse applications across various industries (Table 1). The therapeutic potential of marine glycans has been explored for anti-cancer8 and anti-microbial9 activity as well as for drug delivery enhancement.10 In biotechnology and bioengineering, marine glycans are utilized for bioprinting,11 tissue engineering,12 and other innovative technologies. In the cosmetics and food industries, these glycans serve as active ingredients in cosmetics13 and key components for food packaging14 and preservation.15 In agriculture and aquaculture, marine glycans have been employed to improve fertilization,16 plant growth,17 and animal health.18 The range of application for marine glycans continue to expand in numerous fields.

Table 1 Industrial applications of marine glycans
Glycan Medicine and pharmaceutical Biotechnology and bioengineering Cosmetics and skincare Food and nutrition Agriculture and aquaculture
Alginate Anti-microbial,9,89–91 anti-cancer,92,93 anti-fibrosis,94 drug delivery10 Bioprinting,11,95,96 tissue engineering,12,97,98 fluorescent materials,99 hydrogels,100 bioplastic,99 air-filtration101 Scrubbing additive,102 exfoliating agent,103 active ingredient-carriers13,104,105 Edible films,106,107 food packaging14,108,109 Irrigation,110 fertilization,16 desalination,111 herbicide112 and pest control113,114
 
Fucoidan Anti-cancer,8,115,116 anti-diabetes,117–119 neuroprotective,120 vaccination,121 gut microbiota regulation122 Bioprinting,123 bone tissue engineering,124 endothelialization,125–127 biomaterials128,129 Whitening,130 antioxidant,131–133 skin protection,134 cosmetics formulation135 Food addictive delivery,136 digestibility,137 starch quality138 Animal health,18,139 pesticide toxicity reducing140
 
Laminarin Anti-bacterial,141 anti-cancer,142,143 immunomodulatory,144,145 gut microbiota regulation146,147 Membrane anti-fouling,148 bioplastic149 Anti-wrinkle,80 skin protection150,151 Shelf-life extension,15 digestibility,152 gelatinization153 Fish immunopotentiator154,155
 
Carrageenan Anti-viral,156 anti-cancer,157 anti-inflammatory158 Bioprinting,72,159 bone tissue engineering,160–162 aerogel,163 hydrogels,164 biodegradable devices165 Skin hydration,81 anti-photoaging166 Cold storage,167 meat quality,168,169 anti-glycation170 Plant growth,17,171 fertilization,172 pest control,173 dye removal174
 
Agar Drug delivery,175 nanomedicine176 Bioprinting,177 bio-cleaning,178 hydro-films179 Wound healing,180 anti-aging facemasks181 Emulsifier,182 food jellies,87 packaging183,184 Harvesting,185 dye removal186
 
Mannan Anti-viral,66 anti-cancer187        
 
Ulvan Anti-viral,188 anti-inflammatory,189 anti-diabetes,190 immunomodulatory,67 drug delivery191,192 Skin tissue engineering,193 endothialization,194 nanofibers,195,196 hydrogels197,198 Antioxidant and whitening82 Edible films,199 healthy-aging nutraceuticals200 Plant health,201,202 fish immunopotentiator203
 
Chitin Anti-microbial,204 anti-cancer,68,205 anti-inflammatory206 Bioprinting,74 hydrogels,207,208 nanomaterials209,210 Skin regeneration211,212 Emulsifier,213 packaging,214,215 quality control216 Pest control,217 metal218 and microplastic219 removal
 
Chitosan Anti-viral,69,220 anti-bacterial,221,222 anti-cancer,223 anti-coagulant224 Green nanotechnology,75 biosensor,225,226 hydrogels227 Anti-aging,83,228 color cosmetics,229 skin penetration,230 acne removal231 Packaging,232,233 quality control234 Soil strength,235 fertilization,236 pest control,237,238 wastewater filtration,239,240 plant health241,242
 
GAGs Anti-inflammatory,243,244 cartilage repair,245,246 bone regeneration,247 neuroprotective248 Brain tissue repair,249 3D biomimetics,250,251 tissue engineering252 Anti-aging and antioxidant,84 cosmetics formulation253 Functional food ingredients254–256  
 
Glucan Anti-cancer,257,258 immunomodulatory,58 intestinal health57       Fish immunopotentiator259,260
 
EPS Anti-bacterial,71 anti-cancer,261,262 anti-coagulant,263 anti-inflammatory264 Biodiesel,265 biosurfactants,266 bioremediation77 Anti-allergy,85 active ingredient formulation86 Emulsifier,267,268 thermostable gelling agent269 Aquatic infection control,270 metal removal271


The primary challenge associated with marine glycans lies in their structural complexity. While their functional roles are well-established, the detailed molecular mechanisms by which their structures dictate these functions remain poorly understood. This knowledge gap arises largely because most studies have been conducted using isolated glycans or heterogeneous mixtures, which provide bioactivity information but lack the precision needed to elucidate structure–function relationships. Although a limited number of studies have investigated these glycans through defined structures, such studies are often resource-intensive, requiring expert chemists and complex synthetic methodologies. As a result, advancing research techniques is imperative to deepening our understanding of marine glycans.

One approach to studying marine glycans is enzymatic extraction using CAZymes, enzymes that break down carbohydrates and provide insights into the building blocks of complex glycans.19–22 However, a limitation of this method is the lack of a full set of enzymes capable of degrading all glycans, highlighting their inherent complexity. This complexity likely explains their role in carbon sequestration, as some glycans resist microbial breakdown, contributing to long-term carbon storage in the ocean.23,24

To address this challenge, AGA has emerged as a powerful tool. AGA allows for the efficient, reproducible, and controlled synthesis of marine glycans, bypassing the need for expert chemists.25,26 Using AGA, researchers can create pure, defined glycans, enabling detailed studies such as NMR spectroscopy to identify specific epitopes and examine the enzymatic processes of carbohydrate degradation. This strategy helps uncover glycans that are resistant to microbial breakdown and their role in carbon sequestration. In particular, algae produce complex glycans with modifications, such as sulfation, that protect them from degradation and enhance their contribution to carbon storage in the ocean.

Here, we review the structures and sources of marine glycans, while exploring the diverse bioactivities of glycans and their applications. We highlight two complementary approaches to gaining a deeper understanding of marine glycans, focusing on their role in the carbon cycle and their structure–function relationships. We emphasize the synergy between harnessing the industrial potential of marine glycans and advancing our molecular understanding of these complex molecules (Fig. 1).


image file: d5cb00090d-f1.tif
Fig. 1 Overview over marine glycans and methods to establish their structure–activity relationships. (A) Marine glycans, sources, and applications. (B) Glycans as central metabolic fuels in the marine carbon cycle. (C) Enzymatic extraction and automated glycan assembly as complementary methods to access marine glycans.

2. Sources and structures of marine glycans

Marine organisms synthesize glycans that are vital for biological processes such as metabolism, cell signalling, immune modulation, and structural integrity.5,27 The structure and composition of these glycans vary significantly across classes of organisms and between species. In this section we categorize glycans from three major groups of marine organisms: macroalgae, invertebrates and vertebrates, and microbes (fungi, bacteria, and microalgae, including cyanobacteria and diatoms). The unique glycan structures within these groups will be explored in more detail to highlight their functional significance in the marine environment (see Fig. 2 and 3).
image file: d5cb00090d-f2.tif
Fig. 2 Structures of marine glycans derived from macroalgae. Chemical motifs highlight core structural features specific to each glycan, while the representative structures illustrate the diversity of these glycans in nature. All glycan symbols follow the symbol nomenclature for glycans (SNFG) guidelines.

image file: d5cb00090d-f3.tif
Fig. 3 Structures of marine glycans derived from marine invertebrates, vertebrates, and microorganisms. Chemical motifs highlight core structural features specific to each glycan, while the representative structures illustrate the diversity of these glycans in nature. All glycan symbols follow the symbol nomenclature for glycans (SNFG) guidelines.

2.1. Glycans in marine macroalgae

Marine macroalgae, including brown, red, and green seaweeds, are vital components of the marine ecosystem. Each algal class produces unique glycans in their cell walls that contribute to structural integrity and facilitate cellular signalling.4,5 As crucial players in the marine carbon cycle, macroalgae generate diverse and complex glycans that resist microbial degradation, and enhance carbon sequestration in the ocean.6

Brown algae contain three main classes of glycans: alginate, fucoidan, and laminarin. The structure and composition of these glycans are highly species-specific and reflect the glycan diversity within brown algae.

2.1.1 Alginate. Alginates are a major component of the extracellular matrix in brown algae. These linear polymers consist of three main units: β-(1 → 4)-D-mannuronic acid (M block), α-(1 → 4)-L-guluronic acid (G block), and the alternating β-(1 → 4)-D-mannuronic acid-α-(1 → 4)-L-guluronic acid (MG block) units. Alginates are typically found in calcium salt form, particularly in the G-rich regions28 and extracted from various brown seaweeds, including Laminaria hyperborea, Laminaria digitata,29 and Macrocystis pyrifera.30 The proportion of M and G blocks can vary depending on the species, with the G block content ranging from 10% to 70%.31
2.1.2 Fucoidan. Fucose-containing sulfated polysaccharides, termed fucoidan, constitute a major component of the brown algal cell wall. These polysaccharides can be classified into two main types: homogeneous fucoidans, also known as fucans, which are primarily composed of highly sulfated L-fucose residues; and heterogeneous fucoidans that have more complex backbones incorporating monosaccharides other than fucose, such as D-galactose, D-xylose, D-mannose, and D-glucuronic acid.28 Fucans typically have two major backbone structures: one consisting of pure α-(1 → 3)-L-fucose and the other of alternating α-(1 → 3)-L-fucose and α-(1 → 4)-L-fucose linkages. The prevalence of these backbones varies by species, with Fucales (such as Fucus and Sargassum) being rich in the α-(1 → 3)-L-fucose backbone,32 while Laminariales are more enriched in the alternating backbone.33 Fucans are heavily sulfated on the L-fucose residues, with O-sulfate esters typically occupying the 2S, 3S, and 4S positions. In contrast, heterogeneous fucoidans display greater diversity in their backbones and degree of sulfation, with no single common structure or trait defining them. The full characterization of fucoidans remains incomplete, and further research is necessary to better understand their structural diversity.28
2.1.3 Laminarin. Laminarin is a major component found in the vacuoles of brown algae, serving as a food reserve.34 Laminarin is typically characterized as a linear polymer of β-(1 → 3)-D-glucose units, with fractional branches of β-(1 → 6)-D-glucose residues. The ratio of (1 → 3) and (1 → 6) linkages varies between species. For instance, when extracted from Dictyota dichotoma and Sargassum fusiforme, the ratio is 3[thin space (1/6-em)]:[thin space (1/6-em)]1 for (1 → 3) and (1 → 6) linkages, while in Sargassum duplicatum, the ratio is 6[thin space (1/6-em)]:[thin space (1/6-em)]1.35 Laminarin is further classified into two types based on the nature of the reducing ends: the G-chain, containing a terminal D-glucose unit, and the M-chain, containing O-substituted D-mannitol at the termini. The proportion of M versus G chains varies among species, and in some cases, the M-chain is completely absent.35

The next class of macroalgae is red algae, which contains a variety of glycans. This section focuses on three primary types: carrageenan, agar, and mannan.

2.1.4 Carrageenan. Carrageenan is a class of sulfated polysaccharides primarily composed of D-galactose units, found predominantly in red algae. Carrageenan exists in three main types: κ-carrageenan, ι-carrageenan, and λ-carrageenan. All three types share a general backbone of alternating α-(1 → 4)-D-galactose or 3,6-anhydro-D-galactose and β-(1 → 3)-D-galactose, with varying positions containing sulfate esters and 3,6-anhydro bridges.36 κ-Carrageenan consists of a disaccharide repeating unit of β-(1 → 3)-D-galactose-4-O-sulfate linked to α-(1 → 4)-3,6-anhydro-D-galactose. ι-Carrageenan contains a disaccharide repeating unit of β-(1 → 3)-D-galactose-4-O-sulfate linked to α-(1 → 4)-3,6-anhydro-D-galactose-2-O-sulfate. λ-Carrageenan is composed of a disaccharide repeating unit of β-(1 → 3)-D-galactose-2-O-sulfate linked to α-(1 → 4)-D-galactose-2,6-O-sulfate.37 The highest global production of carrageenan comes from species of Eucheuma and Kappaphycus, with Kappaphycus alvarezii being the primary producer of κ-carrageenan.38
2.1.5 Agar. Agar is composed of two main components, agarose and agaropectin, which are found in the cell walls of red algae, particularly in species of Gracilaria and Gelidium.39,40 Agarose consists of a disaccharide unit called agarobiose, composed of α-(1 → 4)-3,6-anhydro-L-galactose and β-(1 → 3)-D-galactose. Agaropectin makes up a smaller portion of agar, shares a similar backbone but also contains additional modifications, such as methoxyl, sulfate, and pyruvate groups at various positions along the chain.41 The amount of agaropectin varies across species; for example, Gracilaria species generally contain more agaropectin than Gelidium species.42 Unlike carrageenan, agar contains 3,6-anhydro-L-galactose, whereas carrageenan contains 3,6-anhydro-D-galactose.
2.1.6 Mannan. Mannans are important polysaccharides found in red seaweeds, exhibiting considerable diversity, including both α- and β-mannan forms. One prominent variant found in Nemalion vermiculare is α-(1 → 3)-D-mannan, often sulfated at the O-4 and O-6 positions, with a D-xylose residue branching from C-2.43 Another form, β-(1 → 4)-D-mannan, is found in the cuticle of Porphyra umbilicalis.44 These mannans, particularly the sulfated varieties, are crucial for the structural integrity and functional properties of the red seaweed cell wall, helping the organism withstand environmental stresses.

The final class of macroalgae is green algae that are primarily recognized for producing ulvan.

2.1.7 Ulvan. Ulvan is a highly sulfated polysaccharide found in the extracellular matrices of green algae, particularly within Ulva species. Ulvan consists of two main types of repeating disaccharide units, type A and type B, commonly referred to as ulvanobiuronic acids. Type A is characterized by a repeating unit of β-(1 → 4)-D-glucuronic acid linked to α-(1 → 4)-L-rhamnose-3-O-sulfate (A3S), while type B consists of α-(1 → 4)-L-iduronic acid linked to α-(1 → 4)-L-rhamnose-3-O-sulfate (B3S). In some variants, the uronic acids are replaced by D-xylose, forming ulvanobioses, which include β-(1 → 4)-D-xylose linked to α-(1 → 4)-L-rhamnose-3-O-sulfate (U3S) or β-(1 → 4)-D-xylose-2,3-O-sulfate linked to α-(1 → 4)-L-rhamnose-3-O-sulfate (U2′S,3S).45 The occurrence of these ulvan variants is highly species-dependent. For instance, ulvanobiuronic acids are more widely distributed across Ulva species, whereas ulvanobioses are primarily found in Ulva rigida from the Canary Islands and France.45

2.2. Glycans in marine invertebrates and vertebrates

Marine invertebrates and vertebrates produce glycans of significant interest, such as chitin, chitosan, and glycosaminoglycans that have been studied extensively. Unlike glycans from macroalgae and other organisms discussed in this review, the structures of these glycans are generally well-preserved across species, making them valuable for scientific research and applications.
2.2.1 Chitin. Chitin is a linear polysaccharide composed of β-(1 → 4)-N-acetyl-D-glucosamine residues. It is commonly found in the exoskeletons of marine invertebrates, such as crustaceans (shellfish, crabs, shrimps),46 as well as in the cell walls of terrestrial fungi and exoskeletons of insects.47 The structure of chitin remains largely consistent across species, from terrestrial organisms to marine invertebrates, making it the second most abundant polysaccharide after cellulose.48
2.2.2 Chitosan. Chitosan is formed through the deacetylation of chitin, resulting in repeating units of β-(1 → 4)-D-glucosamine and β-(1 → 4)-N-acetyl-D-glucosamine, with more than 50% deacetylation.49 Chitosan is obtained by first extracting chitin and then subjecting it to deacetylation.50
2.2.3 Glycosaminoglycans (GAGs). Glycosaminoglycans are linear, unbranched polysaccharides composed of disaccharide repeating units that carry a high negative charge. These polysaccharides are found in the extracellular matrices of mammalian cells, as well as those of marine invertebrates and vertebrates.51 GAGs are classified into four main groups based on their disaccharide repeating units: heparin/heparan sulfate (HS), chondroitin sulfate (CS)/dermatan sulfate (DS), keratan sulfate (KS), and hyaluronic acid (HA).

Heparin and heparan sulfate are composed of disaccharide units of (1 → 4)-α-N-acetyl-D-glucosamine linked to α-(1 → 4)-L-iduronic acid (heparin) or β-(1 → 4)-D-glucuronic acid (heparan sulfate).52 Heparin contains a high degree of sulfation, with modifications varying depending on the source. Sulfation commonly occurs on the amino group of the amino sugar and on O-6 of the glucosamine residue, while O-2 sulfonate groups are found on the uronic acids.53 Chondroitin sulfate consists of β-(1 → 4)-D-glucuronic acid linked to β-(1 → 3)-N-acetyl-D-galactosamine, with frequent sulfation at O-6 of the galactosamine residue. Dermatan sulfate, similar to chondroitin sulfate in backbone structure, differs by having L-iduronic acid instead of D-glucuronic acid residues.54 Keratan sulfate is composed of disaccharide repeating units of β-(1 → 3)-D-galactose linked to β-(1 → 4)-N-acetyl-D-glucosamine, with the sulfate group often present on O-6 of the glucosamine residue.55 Finally, hyaluronic acid is the only non-sulfated GAG. HA consists of a disaccharide unit of β-(1 → 4)-D-glucuronic acid linked to β-(1 → 3)-N-acetyl-D-glucosamine, forming an alternating structure with respect to the (1 → 4) and (1 → 3) linkages.52

2.3. Glycans in marine microorganisms

Marine microorganisms, namely fungi, bacteria, and microalgae, are key players in the oceanic carbon cycle. Marine fungi and bacteria, residing in the deep ocean, break down glycans into their chemical constituents.6,56 In contrast, microalgae, including diatoms and cyanobacteria, inhabit the ocean's surface where they fix carbon from the atmosphere and serve as a primary food source for marine organisms.3 These marine microbes contribute to the circulation of marine carbon by biosynthesizing and releasing glycans into the environment. This section provides an overview of the common types of glycans originating from these marine microorganisms.
2.3.1 Glucan. Glucans are present in marine fungi and diatoms in the forms of α- and β-glucans. α-Glucans, commonly found in marine fungi, typically feature a backbone of α-(1 → 4)-D-glucose, with some fractions containing α-(1 → 6)-D-glucuronic acid at the non-reducing end.57 Meanwhile, β-glucans are predominantly composed of β-(1 → 3)-D-glucan residues, with lower amounts of β-(1 → 6)-D-glucan branching units. These β-glucans are frequently observed in marine diatoms.58,59
2.3.2 Exopolysaccharides (EPS). Exopolysaccharides are glycans secreted by marine microbes into their environment, primarily serving as a defence mechanism against extracellular stress.60 These glycans are composed of diverse monosaccharides, including common sugars like D-mannose, D-galactose, and D-glucuronic acid, and rare sugars such as 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and deoxy sugars. EPS exhibit significant structural diversity, with modifications like acetylation, carboxymethylation, phosphorylation, and sulfation. They also feature a variety of glycosidic linkages, which can include branched, terminal, or linear motifs.61 EPS have been studied in a wide range of microbial species, including fungi, bacteria, and diatoms.62 For example, an EPS from the deep-sea bacterium Vibrio alginolyticus contains a tetrasaccharide unit with α-(1 → 3)-D-galacturonic acid-α-(1 → 4)-D-galacturonic acid-α-(1 → 3)-D-galacturonic acid-β-(1 → 3)-N-acetyl-D-glucosamine.63 In contrast, an EPS from the seawater bacterium Pseudoalteromonas flavipulchra features a trisaccharide unit composed of 4-O-acetylated-6-deoxy-L-talose, β-(1 → 3)-D-galactose, and α-(1 → 7)-Kdo.64

3. Industrial applications of marine glycans

Marine glycans play a significant role across numerous industrial sectors. This section will explore five primary applications of marine glycans: (1) biomedicine and pharmaceutical, (2) biotechnology and bioengineering, (3) cosmetics and skincare, (4) food and nutrition, and (5) agriculture and aquaculture. Each application area will highlight select examples from the three main groups of marine organisms. A more comprehensive listing is provided in Table 1. As research progresses, the applications of marine glycans continue to expand, unveiling new opportunities across various fields.

3.1. Biomedicine and pharmaceuticals

The biomedical and pharmaceutical industries continuously seek to improve existing therapeutics and explore novel treatments, driving the investigation of marine-derived glycans for their diverse therapeutic properties and potential to advance medicine.
3.1.1 Marine glycans from macroalgae. Wang et al.8 demonstrated that fucoidan from brown algae alleviated chemotherapy-induced alopecia and enhanced chemotherapy efficacy. Jang et al.65 reported that λ-carrageenan displayed antiviral activity against influenza viruses and SARS-CoV-2. Meanwhile, Recalde et al.66 showed that over-sulfated mannans from the red alga Nemalion helminthoides had potent virucidal activity against herpetic and dengue viruses. Son et al.67 found that ulvan from Ulva pertusa reduced weight loss, activated immune cells, and increased cytokine secretion in immunosuppressed mice.
3.1.2 Marine glycans from invertebrates and vertebrates. Solairaj et al.68 reported the anticancer potential of chitin-copper/silver nanocomposites against human breast cancer cells. Loutfy et al.69 demonstrated that chitosan nanoparticles incorporating silymarin were effective antiviral agents against SARS-CoV-2. In addition, Egea et al.70 highlighted the antioxidant and neuroprotective activities of chondroitin sulfate (CS) in neuroblastoma cells, suggesting CS's potential for treating neurodegenerative diseases.
3.1.3 Marine glycans from microorganisms. Rizzi et al.58 isolated a β-glucan from the marine diatom Conticribra weissflogii, which enhanced macrophage activity without cytotoxicity against glioblastoma cells. Ghareeb et al.71 studied EPS from the marine bacterium Streptomyces vinaceusdrappus, which exhibited antioxidant, anti-inflammatory, anti-diabetic, anti-Alzheimer, antibacterial, and antibiofilm properties.

3.2. Biotechnology and bioengineering

In biotechnology and bioengineering, growing interest in new bio-based technologies motivates the exploration of marine-derived glycans, whose unique properties enable innovations in bioprinting, tissue engineering, and biosynthetic materials.
3.2.1 Marine glycans from macroalgae. Norouzi et al.11 identified that a 4% w/v alginate concentration in silk fibroin bioink provided optimal accuracy for 3D printing scaffolds in bone tissue engineering. Bitencourt et al.72 developed carrageenan-based gels for dysphagia patients, noting that κ-carrageenan concentration impacts gel texture and printing performance. Pari et al.73 further reviewed the diverse applications of ulvan-based biomaterials in biotechnology.
3.2.2 Marine glycans from invertebrates and vertebrates. Zheng et al.74 explored chitin's potential in 3D printing hydrogels for wound dressings, finding that β-chitin nanofiber concentration significantly influenced the quality of the printed scaffold, with 5–10 wt% yielding optimal performance. Ahmed et al.75 developed chitosan–MgO nanocomposites with antibacterial properties for leather, improving durability and resistance to environmental degradation. Lou et al.76 fabricated hyaluronic acid-collagen-based hydrogels to mimic the extracellular matrix in 3D cell cultures, enhancing cell spreading and fiber remodelling by adjusting HA concentration and crosslinking properties.
3.2.3 Marine glycans from microorganisms. Teixeira et al.77 isolated an EPS from Klebsiella oxytoca, which effectively stabilized hydrophilic emulsions, displayed iron-chelating properties, improved viscosity, and was non-toxic to non-tumor cells. Gutiérrez et al.78 investigated an EPS from Antarctobacter sp. TG 22, which formed highly stable emulsions, outperforming non-marine EPS like xanthan gum and gum Arabic in stabilizing ability.

3.3. Cosmetics and skincare

The cosmetics industry leverages marine glycans for their bioactive properties as active ingredients in cosmetic products. These glycans are valued for their therapeutic potential and sustainable sourcing.79
3.3.1 Marine glycans from macroalgae. Cheong et al.80 enhanced laminarin's bioactivity by introducing ester modifications, resulting in laminarin butyl esters with anti-glycation properties that prevent skin aging and promote skin whitening. Zhu et al.81 enzymatically degraded κ-carrageenan into tetrasaccharides, which maintained hydration in keratinocytes and reduced oxidative stress and inflammation. Don et al.82 developed a chitosan-ulvan film with enhanced tensile strength and bioactivities, including antioxidant effects, skin whitening, and selective toxicity to melanoma cells.
3.3.2 Marine glycans from invertebrates and vertebrates. A chitosan-based face mask with Achyranthes aspera leaf extracts exhibited antibacterial, antioxidant, and anti-aging properties, while being non-toxic to mouse embryonic fibroblasts.83 Galvez-Martin et al.84 investigated a hyaluronic acid matrix with dermatan sulfate, chondroitin sulfate, and collagen, demonstrating regenerative effects on fibroblasts and keratinocytes, alongside moisturizing, antioxidant, and anti-aging benefits for both oral and topical applications.
3.3.3 Marine glycans from microorganisms. Tseng et al.85 found that polysaccharide extracts from the cyanobacterium Nostoc commune possessed anti-allergic and skin-protective properties, improving skin elasticity and flexibility. Additionally, a wide range of marine EPS have been featured in several cosmeceutical patents,86 showcasing anti-aging, anti-inflammatory, and wrinkle reducing activities.

3.4. Food and nutrition

Marine glycans are significant contributors to the food industry, utilized to elevate nutrient content and food preservation qualities.
3.4.1 Marine glycans from macroalgae. Moroney et al.15 observed that laminarin and fucoidan extracted from Laminaria digitata reduced iron-induced lipid oxidation in pork liver tissues, suggesting their antioxidant potential in high protein foods. Menaka and Wijesekara87 explored agar from Gracilariopsis longissimi as a plant-based gelatin alternative for food jellies, highlighting its viability as a gelling agent. Morelli et al.88 validated ulvan as an emulsifying agent in functional food formulations, particularly in sustainable oil and water emulsions for soft drinks.
3.4.2 Marine glycans from invertebrates and vertebrates. Yin et al.213 investigated chitin's role in stabilizing Pickering emulsions, using chitin nanowhiskers to encapsulate flavor compounds in essential oils and reduce lipid oxidation. Paulose and Chakraborty254 extracted a sulfated glycosaminoglycan-like heteropolysaccharide from the octopus Cistopus indicus, which enhanced glucose uptake in adipocytes, suggesting its potential as a bioactive ingredient in functional foods for managing type-2 diabetes.
3.4.3 Marine glycans from microorganisms. Gan et al.267 identified a novel EPS from Halomonas saliphila strain LCG169T, which exhibited oil-capturing, foaming, and emulsifying properties, making it a potential bioemulsifier for oils like olive or sunflower oil. Sran et al.268 discovered an EPS from Rhodobacter johrii that formed a thermally stable bioemulsifier, ideal for improving texture and stability in food products.

3.5. Agriculture and aquaculture

Marine glycans are recognized for their efficacy in boosting productivity and promoting healthy ecosystems.
3.5.1 Marine glycans from macroalgae. Aboulella et al.111 examined alginate's role in water management, synthesizing hydrogels that desalinated water and increased potassium concentrations for nutrient-rich irrigation. Thye et al.171 showed λ-Carrageenan improves nutrient uptake and cell homeostasis in banana plants to enhance growth. Velho et al.202 observed that ulvan can boost plant resistance to pathogenic fungi by upregulating genes that strengthen cell walls.
3.5.2 Marine glycans from invertebrates and vertebrates. Liu et al.235 demonstrated chitosan, combined with enzyme-induced carbonate precipitation, protected red mud from wind erosion by enhancing carbonate production and formed a durable crust layer. Njimou et al.219 synthesized chitin–MnO2–alginate nanoparticles for wastewater treatment and achieved effective adsorption of Cd(II) and Pd(II) in a spontaneous and endothermic process.
3.5.3 Marine glycans from microorganisms. Reyes-Becceril et al.260 isolated a β-(1 → 3)-glucan with (1 → 6) branching from the marine yeast Debaryomyces hansenii; the glycan enhanced fish health by exhibiting antioxidant activities and promoting intestinal health without causing histopathological damage. Similarly, Perveen et al.259 studied β-(1 → 3)-glucan from the microalga Euglena gracilis and reported that this glucan increased enzyme responses, upregulated innate immune genes, and exhibited dose-dependent antiparasitic activity in marine crabs against Mesanophrys spp.

4. Extraction of marine glycans

4.1. Enzymatic degradation of marine glycans

The enzymatic degradation of marine glycans is essential to global carbon cycling,23 organic matter turnover, and biogeochemical processes, reinforcing ocean productivity and ecological balance.272 Heterotrophic microorganisms biosynthesize a diverse array of specialized carbohydrate-active enzymes (CAZymes) that catalyze the hydrolysis of specific glycosidic bonds in polysaccharides. These enzymes include, but are not limited to, glycoside hydrolases (GHs), agaroses, sulfatases, carrageenases, alginate lyases, chitinases, amylases, lipases, phytases and proteases.273 They are systematically categorized into families based on their structures and functions, as detailed in the CAZymes database (https://www.cazy.org). This diverse array of CAZymes efficiently liberates valuable monosaccharides and bioactive molecules from marine biomass,274,275 including agarose, alginate and sulfated polysaccharides derived from seaweeds; chitin and chitosan from crustaceans; and collagen and glycosaminoglycans from fish. A deeper understanding of the enzymatic mechanisms unlocks significant potential for biotechnological and industrial applications (Table 1).46,276

4.2. Enzymatic extraction of marine glycans

Different enzymatic methods have been explored to enhance the efficiency of marine polysaccharide degradation. Conventional extraction often employs harsh conditions that can diminish the target molecule's functional attributes. In contrast, enzymatic extraction with specific hydrolyses has emerged as a promising approach for augmenting product yield, preserving bioactive properties, and minimizing environmental impact.

A comprehensive analysis of the extraction, modification, degradation, and bioactivity of pivotal marine polysaccharides, encompassing agar, fucoidan,28 ulvan,274,277 carrageenan,161 alginate, chitin278,279 and chitosan focused on elucidating the underlying enzymatic mechanisms.24,280–282 The biodiversity of CAZymes involved in marine polysaccharide degradation and their ecological roles have been studied.24,283 Liu et al.284 highlighted recent advancements in enzymatic, chemical, and physical methodologies for the depolymerization of fucoidan into low-molecular weight fucoidan and fuco-oligosaccharides. Wu et al.285 identified a broad-specificity, high-thermostability chitinase (AfChi28) from the marine fungus Aspergillus fumigatus df347, positioning AfChi28 as a potential biocatalyst for chitin oligosaccharide production. Additionally, highly specific glycoside hydrolases derived from marine flavobacteria were characterized and demonstrated their efficacy in analysing laminarin from diatoms and seawater samples.20 Challenges associated with the standardization of fucoidan preparations and the potential applications of fucoidanases in pharmaceutical and nutraceutical sectors have been explored.286 Analytical methodologies are key to the elucidation of structural features and molecular composition of compounds post-extraction, particularly in the characterization of complex marine polysaccharides.19,22

4.3. Challenges in marine glycans biodegradation by enzymes

The intricate structural modifications of marine polysaccharides confer significant resistance to enzymatic degradation, presenting a major challenge for developing a comprehensive marine glycomic workflow.24,287 Structural complexity, unique monosaccharide compositions, distinct glycosidic linkages, heterogeneous molecular weights, diverse conformational architectures, intricate sulfation patterns, and limited enzymatic efficiency are challenging. The high variability of marine polysaccharides across species further complicates the establishment of standardized degradation and characterization methods. Understanding these complexities is essential for effectively harnessing the potential of marine polysaccharides (Fig. 4).
image file: d5cb00090d-f4.tif
Fig. 4 Challenges in marine glycan biodegradation by enzymes.
4.3.1 Structural complexity of marine glycans. Marine glycans exhibit remarkable structural complexity and monosaccharide variability, demanding a wide range of CAZymes for enzymatic degradation.272

A single CAZyme targets specific linkages, but complex polysaccharides necessitate a corresponding set of enzymes, each specialized for a particular linkage. Fucoidan, a highly heterogeneous sulfated polysaccharide derived from brown algae, features complex branching, diverse linkages, and variable sulfation patterns. As a result, fucoidan degradation requires 284 putative fucoidanases, glycoside hydrolases (GHs), sulfatases, and carbohydrate esterases, as shown in Verrucomicrobium bacteria.288 In Lentimonas sp. CC4, 100 enzymes are utilized to break down fucoidan,289 emphasizing the extensive enzymatic machinery needed to address its structural heterogeneity. In contrast, less complex β-glucans like laminarin are degraded rapidly by just two to three enzymes.290

The breakdown of carrageenan is a complex process, requiring the coordinated action of multiple enzymes to overcome the structural intricacies of sulfated galactan from red algae.291 Side chains limit the activity of endo-acting enzymes due to steric hindrance, hindering the complete hydrolysis of polysaccharides like laminarin.21,292 Specifically, GH16 and GH17 enzymes exhibit different specificities towards laminarin, with GH17 enzymes showing narrow specificity for non-decorated β-(1 → 3)-glucan stretches, suggesting that the presence of β-(1 → 6) side chains impede their activity.20 To fully degrade polysaccharides, bacteria require a unique enzyme for each distinct chemical bond between the building blocks, underscoring the need for a robust enzymatic repertoire to address the diversity of glycosidic linkages.23

4.3.2 Intricate sulfation patterns. Many marine polysaccharides are sulfated, and their sulfation levels and patterns can significantly influence their biological activities and interactions with cell receptors (Table 1). Desulfation of marine sulfated galactofucans resulted in lower anti-thrombin binding compared to their sulfated counterparts.293 On other hand sulfate groups attached at various positions on monosaccharides (O-2, O-3, or O-4) increase negative charge and steric hindrance, hindering enzyme access. Consequently, the removal of sulfate groups by sulfatases is often necessary before glycoside hydrolases can effectively act on the glycan backbone.23 Sulfate groups are essential for the activity of the fucoidanase FFA, likely due to specific binding interactions with the enzyme, whereas for the fucoidanase from Lambis sp., sulfate groups interfered with enzyme hydrolysis.286 Thus, the presence or absence of sulfate groups, depending on the enzyme, can either promote or hinder activity, potentially by affecting the enzyme's ability to approach and bind the substrate.
4.3.3 Diverse structural conformations. Glycosidic linkages buried within the three-dimensional network of marine polysaccharides due to folding, hydrogen bonding, or interaction with water and ions can influence their functionality, including interactions with complement enzymes.272,294 The polysaccharide conformation affects the accessibility of glycosidic bonds to hydrolyzing enzymes that are typically stereospecific and linkage-specific.22 Hence, variations in configurations require enzymes with corresponding specificities.20 Compact three-dimensional arrangements, resulting from extensive inter- and intramolecular interactions, can render polysaccharides highly resistant to enzymatic degradation.294 The endo-α-1,6-mannanase (ShGH76) from Salegentibacter sp. Hel_I_6, interacts with kinked oligomannan conformations, a structural feature specific to fungal α-1,6-mannans.295 This study highlights how the complexity and conformational flexibility of glycans challenge enzymatic breakdown efficiency.
4.3.4 Enzyme specificity. The efficiency of CAZymes is constrained by their specificity for particular glycan structures.23 GH enzymes, including porphyranases and agarases that target sulfated galactans, possess highly substrate-specific active sites.23 The enzymatic degradation of microalgal cell walls also requires enzymes that are highly specific and versatile for effective bioconversion.296 Thus, finding the exact enzyme with the required specificity for a particular marine glycan is challenging, given the underexplored nature of marine environments and their microbial enzyme diversity.272
4.3.5 Environmental conditions. As algal blooms mature, more complex polysaccharides become available, requiring enzymes with greater specificity and efficiency for their degradation.297 Seasonal shifts in CAZyme expression underscore this constraint: in spring, elevated β-(1 → 3)-glucosidase activity targets laminarin, while in winter, α-glucan-degrading enzymes dominate.298 Enzymatic degradation is also dependent on environmental factors such as pH. Fucoidanases isolated from marine invertebrates, including the molluscs Haliotus sp., Mizuhopecten yessoensis, and the sea urchin Strongylocentrotus nudus, showed peak activity in the pH range of 3.5–5. In contrast, fucoidanase from the marine bacterium Formosa algae KMM 3553T exhibited maximal activity over a wide pH range from 6.5 to 9.286 Another factor influencing enzymatic degradation is optimal temperature. For κ-carrageenase OUC-FaKC16A, the optimal temperature ranges from 30 to 100 °C; ι-carrageenases function best between 30 to 65 °C; and alginate lyases from Pseudoalteromonas species shows optimal activity at 25 °C to 55 °C.282 Ionic strength is also critical; κ-carrageenases require specific ionic conditions such as the presence of Na+ or Ca2+ for peak activity, and variations in these conditions significantly impact degradation rate and efficiency.299

4.4. Advances in enzyme engineering

Recent advancements in recombinant enzyme technologies have enabled the production of enzymes with enhanced specificity and catalytic efficiency, leading to improved precision in degradation, enhanced capability for detailed structural analysis, and increased yield of bioactive oligosaccharides from marine biomass.276 For instance, the use of recombinant cCgkA and cCglA enzymes for carrageenan hydrolysis demonstrated a 3.1-fold increase in efficiency compared to individual enzymes.300 These innovations support the extraction of bioactive compounds from marine polysaccharides, such as YCP, a mitogenic polysaccharide that enhances phagocytic activity,301 and fucoidan, which shows promise as a therapeutic agent for Alzheimer's disease.302

Combining enzyme-assisted extraction with ultrasound treatment has significantly boosted ulvan recovery from Ulva fenestrata, yielding up to 18% compared to enzymatic extraction alone.274 Ultrasound-assisted enzymatic extraction enhances polysaccharide yield, reduces extraction time, improves cell disruption, and preserves bioactivity under mild conditions.303

Side group modifications of carbohydrates increase the recalcitrance of algae to enzymatic degradation, prompting marine organisms, particularly bacteria, to evolve specific enzymes that can remove these modifications from the carbohydrate backbone before utilizing common CAZymes to hydrolyze the glycosidic bonds.24 Also, the significance of enzyme engineering, particularly alginate lyases, to improve alginate degradation and expand its potential use in sustainable agriculture has been reviewed.304

5. Automated glycan assembly

Automated glycan assembly (AGA) has revolutionized carbohydrate chemistry by enabling the rapid, efficient synthesis of complex oligosaccharides.305,306 This solid-phase synthesis technique allows for the programmable construction of oligo- and polysaccharides from orthogonally protected monosaccharide building blocks, ensuring regio- and stereoselective coupling. AGA optimizes the synthesis workflow by reducing purification steps and handling, providing a controlled environment for precise glycan assembly.25 This technology has broad applications across scientific disciplines, deepening our understanding of glycobiology and advancing therapeutic development. AGA enables the rapid and reproducible synthesis of complex structures, driving innovation in glycoscience and aiding the design of drugs, vaccines, and diagnostic tools that utilize glycans.307–309

5.1 Scope of AGA in marine glycan synthesis

Improvements in AGA methods and synthesis protocols have enabled the production of numerous glycans that represent the primary categories of marine carbohydrates with greater efficiency and accuracy. AGA provides a method to explore marine glycans, laying the groundwork for future innovations in marine-derived therapeutics and biomaterials (Fig. 5).
image file: d5cb00090d-f5.tif
Fig. 5 Scope of AGA in marine glycan synthesis.

The rapid construction of linear and branched polysaccharides up to 100-mers using monosaccharides on an automated synthesizer provided the basis for constructing polysaccharides as large as 151-mers by a 31 + 30 + 30 + 30 + 30 block coupling.26 Production of complex sulfated polysaccharide primarily found in certain brown seaweeds and important for various biological processes, have been achieved through AGA, including the precise synthesis of galactofucan oligosaccharides.305

Research on the AGA of peptidoglycan backbone fragments provided methods that can be adapted for efficient, controlled synthesis of chitin and its derivatives, advancing the production of defined chitin oligosaccharides.310,311 AGA of oligo-β-glucans, key components of marine algae such as laminarin,312 and oligosaccharides related to arabinogalactan proteins contains β(1 → 3) and (1 → 6) linkages which can be further modified to synthesize carrageenan derivatives have been reported.313 GAGs represent a class of polysaccharides with diverse biological functions. AGA has emerged as a transformative technology for the chemical synthesis of GAGs, including keratan sulfate (KS),314 dermatan sulfates (DS),315 chondroitin sulfate (CS),316 and hyaluronic acid (HA),317 incorporating glucuronic acid, iudronic acid, and amino sugar building blocks. These studies demonstrate the capacity of AGA to precisely construct GAGs with controlled sulfation patterns, offering a robust platform for investigating the structure–function relationships of marine GAGs. Automated solid-phase synthesis has been successfully employed for the synthesis of β-mannuronic acid alginates, major components of the cell walls of algae, demonstrating the feasibility of constructing structurally defined marine glycans with challenging (1 → 2)-cis-mannosidic linkages.318

The stereo controlled formation of (1 → 2)-cis-glycosidic bonds is a general difficulty in oligosaccharide synthesis, particularly for fucoidan, which contains these challenging linkages. Additionally, the introduction of multiple sulfate groups at specific positions on the growing glycan chain adds considerable complexity. Careful design of protecting groups and compatible sulfation strategies that can be integrated into the automated process are required. The synthesis of algal fucoidan oligosaccharides, reaching lengths of up to 20-mers with diverse branching patterns and sulfate esters, reinforces AGA's capacity to handle the complexities of major marine polysaccharides.305

6. Future perspectives

AGA offers a powerful and versatile platform for synthesizing a diverse range of structurally defined marine glycans in a controlled laboratory setting. Marine glycans, such as heavily sulfated fucans and mannans, pose significant chemical challenges due to their complex structures. AGA platforms are continuously evolving to facilitate the rapid and reproducible synthesis of these glycans. Future advancements in AGA will focus on optimizing monosaccharide building blocks, glycan back-bone assembly, solid-phase chemistry, and sulfation methods to further expand the library of accessible glycans.

Synthetic glycans act as crucial tools for discovering new enzymes capable of degrading specific algal glycans like fucoidan and mannans. These enzyme cascades can then become tools for environmental detection and quantification of algal glycans, both in the laboratory and the ocean. By exposing microbes to this synthetic diversity, researchers can directly monitor microbe–glycan interactions, providing crucial insights into whether glycan diversity acts as a chemical barrier against degradation.

Synthetic glycans are essential for understanding their fundamental roles in ecological processes like carbon cycling, characterizing enzyme activities, developing new biocatalytic tools, and exploring their vast potential in industrial applications. Continued advancements in AGA methodologies will further enhance these capabilities, paving the way for ground-breaking discoveries in marine glycobiology.

7. Conclusions

Marine glycans are pivotal biomolecules in the oceanic carbon cycle, driving the sequestration of carbon in the deep ocean and contributing to the Earth's largest carbon sink. In addition to their ecological importance, marine glycans exhibit potent bioactivities leveraged by several industries, from medicine to agriculture. Nevertheless, the complexity of glycan structures hinders a fundamental understanding of their functions. Enzymatic extraction methods have made significant advancements in decoding these intricate glycans, yet they face inherent challenges due to incomplete knowledge of glycan structures and the enzymes involved in their biosynthesis and degradation. AGA has emerged as a promising solution, providing a platform for achieving structurally defined glycans that inform enzymatic studies on the molecular constituents responsible for their diverse bioactivities. Together, these complimentary approaches facilitate a synergistic investigation into this essential class of biomolecules, uncovering their ecological and biological roles in the coming decades.

Data availability

No primary research results, software or code have been included and no new data were generated or analysed as part of this review.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

Funding, including open access funding from the Max Planck Society, is gratefully acknowledged.

Notes and references

  1. B. Field, M. J. Behrenfeld, J. T. Randerson and P. Falkowski, Science, 1998, 281, 237 CrossRef PubMed.
  2. H. Buck-Wiese, M. A. Andskog, N. P. Nguyen, M. Bligh, E. Asmala, S. Vidal-Melgosa, M. Liebeke, C. Gustafsson and J. H. Hehemann, Proc. Natl. Acad. Sci. U. S. A., 2023, 120, e2210561119 CrossRef CAS PubMed.
  3. S. Vidal-Melgosa, A. Sichert, T. B. Francis, D. Bartosik, J. Niggemann, A. Wichels, W. G. T. Willats, B. M. Fuchs, H. Teeling and D. Becher, et al., Nat. Commun., 2021, 12, 1150 CrossRef CAS PubMed.
  4. A. Varki, Glycobiology, 2017, 27, 3 CrossRef CAS PubMed.
  5. V. Stiger-Pouvreau, N. Bourgougnon and E. Deslandes, in Seaweed in Health and Disease Prevention, ed. J. Fleurence and I. Levine, Elsevier, 2016, p. 223.
  6. S. Vidal-Melgosa, M. Lagator, A. Sichert, T. Priest, J. Pätzold and J. H. Hehemann, bioRxiv, 2022, preprint, 483023.
  7. A. A. Salmean, W. G. T. Willats, S. Ribeiro, T. J. Andersen and M. Ellegaard, Front. Plant Sci., 2022, 13, 785902 CrossRef PubMed.
  8. Z. Wang, Y. Lai, N. Zhang, H. Yang, Y. Huang, Y. Yang, X. Zhang, J. Ye and M. Xiao, Int. J. Biol. Macromol., 2025, 287, 138321 CrossRef CAS PubMed.
  9. M. Assis, A. Cano-Vicent, A. Tuñon-Molina, R. R. Benzi-Chumachenco, J. Andrés and A. Serrano-Aroca, J. Environ. Chem. Eng., 2024, 12, 110111 Search PubMed.
  10. K. Roy, K. S. Murthy, K. Agarwal, S. L. Manju, J. Baba Bhasarkar and D. K. Kumar Bal, J. Mol. Liq., 2024, 414, 126262 CrossRef CAS.
  11. F. Norouzi, F. Bagheri and S. Hashemi-Najafabadi, Results Eng., 2024, 22, 101210 Search PubMed.
  12. D. Poshina, N. Sokolova, S. Nono-Tagne, H. Ahmadi-Nohadani, I. Gofman, A. Mishanin, A. Golovkin, Y. Skorik and I. Otsuka, RSC Adv., 2024, 14, 38746 RSC.
  13. H. T. P. Nguyen, E. Allard-Vannier, C. Gaillard, I. Eddaoudi, L. Miloudi, M. Souce, I. Chourpa and E. Munnier, Colloids Surf., B, 2016, 142, 272 CrossRef CAS PubMed.
  14. H. Li, Z. Wang, F. Zhu and G. Li, Int. J. Biol. Macromol., 2024, 279, 135441 CrossRef PubMed.
  15. N. C. Moroney, M. N. O'Grady, J. V. O'Doherty and J. P. Kerry, Meat Sci., 2012, 92, 423 CrossRef CAS PubMed.
  16. C. Cao, T. Huo, P. Liu, J. Long, Y. Ma, S. I. Jahan, T. T. Manjoro and F. Dong, Int. J. Biol. Macromol., 2025, 305, 141276 CrossRef CAS PubMed.
  17. H. S. El-Beltagi, S. M. El-Sayed, A. N. Abdelhamid, K. M. Hassan, W. A. Elshalakany, M. I. Nossier, N. M. Alabdallah, N. A. Al-Harbi, S. M. Al-Qahtani and D. B. E. Darwish, et al., Molecules, 2023, 28, 3642 CrossRef CAS PubMed.
  18. G. Guo, W. Yang, C. Fan, R. Lan, Z. Gao, S. Gan, H. Yu, F. Yin and Z. Wang, Front. Vet. Sci., 2022, 9, 1007346 CrossRef PubMed.
  19. R. Dwivedi, A. K. Maurya, H. Ahmed, M. Farrag and V. H. Pomin, Magn. Reson. Chem., 2024, 62, 269 CrossRef CAS PubMed.
  20. S. Becker, A. Scheffel, M. F. Polz and J. H. Hehemann, Appl. Environ. Microbiol., 2017, 83, e03389 CrossRef CAS PubMed.
  21. M. Jonsson, L. Allahgholi, R. R. R. Sardari, G. O. Hreggviethsson and E. N. Karlsson, Molecules, 2020, 25, 930 CrossRef PubMed.
  22. K. C. Lesco, S. K. R. Williams and L. M. L. Laurens, Mar. Drugs, 2025, 23, 105 CrossRef CAS PubMed.
  23. M. Bligh, N. Nguyen, H. Buck-Wiese, S. Vidal-Melgosa and J. H. Hehemann, Curr. Opin. Chem. Biol., 2022, 71, 102204 CrossRef CAS PubMed.
  24. M. Baumgen, T. Dutschei and U. T. Bornscheuer, ChemBioChem, 2021, 22, 2247 CrossRef CAS PubMed.
  25. M. Guberman and P. H. Seeberger, J. Am. Chem. Soc., 2019, 141, 5581 CrossRef CAS PubMed.
  26. A. A. Joseph, A. Pardo-Vargas and P. H. Seeberger, J. Am. Chem. Soc., 2020, 142, 8561 CrossRef CAS PubMed.
  27. B. Kloareg and R. S. Quatrano, Oceanogr. Mar. Biol., 1988, 26, 259 Search PubMed.
  28. L. Mazeas, R. Yonamine, T. Barbeyron, B. Henrissat, E. Drula, N. Terrapon, C. Nagasato and C. Herve, Semin. Cell Dev. Biol., 2023, 134, 112 CrossRef CAS PubMed.
  29. L. V. Evans, M. Simpson and M. E. Callow, Planta, 1973, 110, 237 CrossRef CAS PubMed.
  30. D. Purcell-Meyerink, M. A. Packer, T. T. Wheele and M. Hayes, Molecules, 2021, 26, 1306 CrossRef CAS PubMed.
  31. M. Abhilash and D. Thomas, Biopolymer Composites in Electronics, 2017, p. 405 Search PubMed.
  32. E. Deniaud-Bouet, N. Kervarec, G. Michel, T. Tonon, B. Kloareg and C. Herve, Ann. Bot., 2014, 114, 1203 CrossRef PubMed.
  33. N. M. A. Ponce and C. A. Stortz, Front. Plant Sci., 2020, 11, 556312 CrossRef PubMed.
  34. J. P. Bennett, L. F. Robinson and L. D. Gomez, Algal Res., 2023, 75, 103248 CrossRef.
  35. S. Pramanik, A. Singh, B. M. Abualsoud, A. Deepak, P. Nainwal, A. S. Sargsyan and S. Bellucci, RSC Adv., 2024, 14, 3209 RSC.
  36. Z. Guo, Y. Wei, Y. Zhang, Y. Xu, L. Zheng, B. Zhu and Z. Yao, Algal Res., 2022, 61, 102593 CrossRef.
  37. N. T. M. Bukhari, N. F. M. Rawi, N. A. A. Hassan, N. I. Saharudin and M. H. M. Kassim, Int. J. Biol. Macromol., 2023, 245, 125486 CrossRef CAS PubMed.
  38. R. Rupert, K. F. Rodrigues, V. Y. Thien and W. T. L. Yong, Front. Plant Sci., 2022, 13, 859635 CrossRef PubMed.
  39. M. Salido, M. Soto and S. Seoane, Algal Res., 2024, 77, 103357 CrossRef.
  40. R. Ganjoo, S. Sharma, C. Verma, M. A. Quraishi and A. Kumar, Int. J. Biol. Macromol., 2023, 235, 123571 CrossRef CAS PubMed.
  41. N. Ruocco, S. Costantini, S. Guariniello and M. Costantini, Molecules, 2016, 21, 551 CrossRef PubMed.
  42. V. Cebrián-Lloret, A. Martínez-Abad, A. López-Rubio and M. Martínez-Sanz, Food Hydrocolloids, 2024, 146, 109177 CrossRef.
  43. E. M. Pacheco-Quito, R. Ruiz-Caro and M. D. Veiga, Mar. Drugs, 2020, 18, 583 CrossRef CAS PubMed.
  44. L. Tang, L. Qiu, C. Liu, G. Du, Z. Mo, X. Tang and Y. Mao, Int. J. Mol. Sci., 2019, 20, 5970 CrossRef CAS PubMed.
  45. L. A. Tziveleka, E. Ioannou and V. Roussis, Carbohydr. Polym., 2019, 218, 355 CrossRef CAS PubMed.
  46. I. Younes and M. Rinaudo, Mar. Drugs, 2015, 13, 1133 CrossRef CAS PubMed.
  47. N. A. Zainol Abidin, F. Kormin, N. A. Zainol Abidin, N. A. F. Mohamed Anuar and M. F. Abu Bakar, Int. J. Mol. Sci., 2020, 21, 4978 CrossRef PubMed.
  48. K. Li, R. Xing, S. Liu and P. Li, Carbohydr. Polym., 2016, 139, 178 CrossRef CAS PubMed.
  49. K. K. Dey and M. Ghosh, Chem. Phys. Lett., 2020, 738, 136782 CrossRef CAS.
  50. V. P. Santos, N. S. S. Marques, P. Maia, M. A. B. Lima, L. O. Franco and G. M. Campos-Takaki, Int. J. Mol. Sci., 2020, 21, 4290 CrossRef CAS PubMed.
  51. J. Valcarcel, R. Novoa-Carballal, R. I. Perez-Martin, R. L. Reis and J. A. Vazquez, Biotechnol. Adv., 2017, 35, 711 CrossRef CAS PubMed.
  52. R. Sultana and M. Kamihira, Biotechnol. Adv., 2024, 77, 108456 CrossRef CAS PubMed.
  53. M. M. L. Zulueta, C. L. Chyan and S. C. Hung, Curr. Opin. Struct. Biol., 2018, 50, 126 CrossRef CAS PubMed.
  54. D. Diekjurgen and D. W. Grainger, Biomaterials, 2017, 141, 96 CrossRef CAS PubMed.
  55. V. H. Pomin, Int. J. Biol. Macromol., 2015, 72, 282 CrossRef CAS PubMed.
  56. F. Baltar, Z. Zhao and G. J. Herndl, Microbiome, 2021, 9, 106 CrossRef CAS PubMed.
  57. W. Liu, S. Tang, Q. Zhao, W. Zhang, K. Li, W. Yao and X. Gao, Int. J. Biol. Macromol., 2020, 149, 1180 CrossRef CAS PubMed.
  58. J. Rizzi, T. R. Moro, S. M. B. Winnischofer, G. A. Colusse, C. S. Tamiello, M. Trombetta-Lima, G. R. Noleto, A. M. Dolga, M. E. R. Duarte and M. D. Noseda, Int. J. Biol. Macromol., 2023, 224, 584 CrossRef CAS PubMed.
  59. C. Pooljun, P. Jariyapong, T. Wongtawan, I. Hirono and S. Wuthisuthimethavee, Fish Shellfish Immunol., 2022, 130, 512 CrossRef CAS PubMed.
  60. J. Wang, D. R. Salem and R. K. Sani, Carbohydr. Polym., 2019, 205, 8 CrossRef CAS PubMed.
  61. L. Gan, X. Huang, Z. He and T. He, Int. J. Biol. Macromol., 2024, 264, 130731 CrossRef CAS PubMed.
  62. H. A. H. Ibrahim, H. E. Abou Elhassayeb and W. M. M. El-Sayed, J. Genet. Eng. Biotechnol., 2022, 20, 151 CrossRef PubMed.
  63. S. Drouillard, I. Jeacomine, L. Buon, C. Boisset, A. Courtois, B. Thollas, P. Y. Morvan, R. Vallee and W. Helbert, Mar. Drugs, 2015, 13, 6723 CrossRef CAS PubMed.
  64. J. Muldoon, A. V. Perepelov, A. S. Shashkov, E. L. Nazarenko, V. A. Zubkov, R. P. Gorshkova, E. P. Ivanova, N. M. Gorshkova, Y. A. Knirel and A. V. Savage, Carbohydr. Res., 2003, 338, 459 CrossRef CAS PubMed.
  65. Y. Jang, H. Shin, M. K. Lee, O. S. Kwon, J. S. Shin, Y. I. Kim, C. W. Kim, H. R. Lee and M. Kim, Sci. Rep., 2021, 11, 821 CrossRef CAS PubMed.
  66. M. Perez Recalde, M. J. Carlucci, M. D. Noseda and M. C. Matulewicz, Phytochemistry, 2012, 73, 57 CrossRef PubMed.
  67. S. U. Son, T. E. Kim, J. H. Park, H. J. Suh and K. S. Shin, Int. J. Biol. Macromol., 2024, 275, 133518 CrossRef CAS PubMed.
  68. D. Solairaj, P. Rameshthangam and G. Arunachalam, Int. J. Biol. Macromol., 2017, 105, 608 CrossRef CAS PubMed.
  69. S. A. Loutfy, A. I. Abdel-Salam, Y. Moatasim, M. R. Gomaa, N. F. Abdel Fattah, M. H. Emam, F. Ali, H. A. ElShehaby, E. A. Ragab and H. M. Alam El-Din, et al., RSC Adv., 2022, 12, 15775 RSC.
  70. J. Egea, A. G. Garcia, J. Verges, E. Montell and M. G. Lopez, Osteoarthritis Cartilage, 2010, 18, S24 CrossRef PubMed.
  71. A. Ghareeb, A. Fouda, R. M. Kishk and W. M. El Kazzaz, Int. J. Biol. Macromol., 2024, 276, 133861 CrossRef CAS PubMed.
  72. B. S. Bitencourt, J. S. Guedes, A. Saliba, A. G. O. Sartori, L. C. R. Torres, J. Amaral, S. M. Alencar, B. C. Maniglia and P. E. D. Augusto, Food Res. Int., 2023, 170, 113010 CrossRef CAS PubMed.
  73. R. F. Pari, U. Uju, S. D. Hardiningtyas, W. Ramadhan, R. Wakabayashi, M. Goto and N. Kamiya, Mar. Drugs, 2025, 23, 123 CrossRef PubMed.
  74. Y. Zheng, H. Zhang, Z. Wang, A. Lu, A. Yu and B. Duan, Carbohydr. Polym., 2024, 334, 122028 CrossRef CAS PubMed.
  75. S. Ahmed, S. S. Imon, M. J. Hasan and M. S. Alam, Heliyon, 2024, 10, e39170 CrossRef CAS PubMed.
  76. J. Lou, R. Stowers, S. Nam, Y. Xia and O. Chaudhuri, Biomaterials, 2018, 154, 213 CrossRef CAS PubMed.
  77. L. de Melo Teixeira, E. da Silva Santos, R. S. Dos Santos, A. V. G. Ramos, D. C. Baldoqui, M. L. Bruschi, J. E. Goncalves, R. A. C. Goncalves and A. J. B. de Oliveira, Int. J. Biol. Macromol., 2024, 278, 134400 CrossRef CAS PubMed.
  78. T. Gutierrez, B. Mulloy, C. Bavington, K. Black and D. H. Green, Appl. Microbiol. Biotechnol., 2007, 76, 1017 CrossRef CAS PubMed.
  79. S. Y. Lu, T. Zhou, I. Shabbir, J. Choi, Y. H. Kim, M. Park, J. J. Aweya, K. Tan, S. Zhong and K. L. Cheong, Carbohydr. Polym., 2025, 353, 123276 CrossRef CAS PubMed.
  80. K. L. Cheong, K. Liu, S. Veeraperumal, G. Jaikumar, S. Malairaj, X. Liu, X. Jia, P. Zheng, H. Jiang and R. Cai, et al., Process Biochem., 2025, 152, 29 CrossRef CAS.
  81. C. Zhu, T. Hong, H. Li, Y. Chen, M. Zheng, Z. Li, Z. Jiang, H. Ni and Y. Zhu, Int. J. Biol. Macromol., 2025, 301, 140395 CrossRef CAS PubMed.
  82. T.-M. Don, L.-M. Liu, M. Chen and Y.-C. Huang, Algal Res., 2021, 58, 102408 CrossRef.
  83. S. Madihalli, S. P. Masti, M. P. Eelager, R. B. Chougale, B. M. Anilkumar and A. N. Priyadarshini, Int. J. Biol. Macromol., 2025, 303, 140611 CrossRef CAS PubMed.
  84. P. Galvez-Martin, C. Soto-Fernandez, J. Romero-Rueda, J. Cabanas, A. Torrent, G. Castells and D. Martinez-Puig, Int. J. Mol. Sci., 2023, 24, 4590 CrossRef PubMed.
  85. C. C. Tseng, H.-Y. Yeh, Z. H. Liao, S. W. Hung, B. Chen, P. T. Lee, F. H. Nan, W. L. Shih, C. C. Chang and M. C. Lee, J. Funct. Foods, 2021, 87, 104789 CrossRef.
  86. F. Benhadda, A. Zykwinska, S. Colliec-Jouault, C. Sinquin, B. Thollas, A. Courtois, N. Fuzzati, A. Toribio and C. Delbarre-Ladrat, Mar. Drugs, 2023, 21, 582 CrossRef CAS PubMed.
  87. U. Menaka and I. Wijesekara, Food Chem. Adv., 2025, 6, 100254 Search PubMed.
  88. A. Morelli, A. Massironi, D. Puppi, D. Creti, E. Domingo Martinez, C. Bonistalli, C. Fabroni, F. Morgenni and F. Chiellini, Flavour Fragrance J., 2019, 34, 411 CrossRef CAS.
  89. M. Imtiaz, H. Akram, B. Arshad, A. Shehzad, S. Haider, K. Alam, S. U. Khan, M. A. Mansoor and M. Iqbal, Int. J. Biol. Macromol., 2025, 306, 141420 CrossRef CAS PubMed.
  90. A. Shanmugha Mary, A. Mani, S. Ghosh and K. Rajaram, J. Indian Chem. Soc., 2024, 101, 100122 CrossRef.
  91. J. M. N. Bazán, V. L. Chagas, R. G. Silva, I. S. Soeiro Silva, J. G. Nantes Araujo, L. D. S. Silva, K. L. R. Batista, R. R. D. S. Silva, M. T. D. S. Correia and J. C. D. S. Sousa, J. Drug Delivery Sci. Technol., 2023, 90, 104810 Search PubMed.
  92. R. Al Monla, Z. Dassouki, N. Sari-Chmayssem, H. Mawlawi and H. Gali-Muhtasib, Molecules, 2022, 27, 358 CrossRef CAS PubMed.
  93. X. Hu, X. Jiang, H. Hwang, S. Liu and H. Guan, Eur. J. Phycol., 2004, 39, 67 CrossRef CAS.
  94. K. Vasuthas, J. S. Kjesbu, A. Brambilla, M. Levitan, A. E. Coron, D. M. Fonseca, B. L. Strand, G. Slupphaug and A. M. A. Rokstad, Mater. Today Bio, 2025, 31, 101474 CrossRef CAS PubMed.
  95. J. H. Palma, M. Bertuola and É. B. Hermida, Bioprinting, 2024, 38, e00358 CrossRef.
  96. Y. F. Wu, Y. T. Wen, E. Salamanca, L. Moe Aung, Y. Q. Chao, C. Y. Chen, Y. S. Sun and W. J. Chang, J. Dent. Sci., 2024, 19, 1116–1125 CrossRef PubMed.
  97. S. Surendhiran, S. Savitha, A. Karthik, N. Sruthi, K. S. Balu, K. S. G. Jagan and T. M. Naren Vidaarth, J. Mol. Struct., 2025, 1328, 135323 CrossRef.
  98. G. Zhang, X. Hou, Z. Geng, M. Yusoff, N. A. Roslan and M. H. Razali, Results Chem., 2025, 13, 100905 Search PubMed.
  99. Y. Zheng, J. Liao, Y. Fang, R. Gui, Y. Hou, M. Zhang, Y. Dong, Q. Zheng, P. Luan and X. Chen, Int. J. Biol. Macromol., 2024, 282, 137464 CrossRef CAS PubMed.
  100. X. Zhang, C. Zhu, X. Yang, Y. Ye, G. Zhang, F. Yu, P. Chen, Y. Zhu and Q. Kang, Int. J. Biol. Macromol., 2024, 280, 135880 CrossRef CAS PubMed.
  101. U. Ahmetoglu, M. Gungor and A. Kilic, Int. J. Biol. Macromol., 2025, 294, 139389 CrossRef CAS PubMed.
  102. S. B. Bae, H. C. Nam and W. H. Park, Int. J. Biol. Macromol., 2019, 133, 278 CrossRef CAS PubMed.
  103. N. Selvasudha, R. Goswami, M. Tamil Mani Subi, S. Rajesh, K. Kishore and H. R. Vasanthi, Carbohydr. Polym. Technol. Appl., 2023, 6, 100342 CAS.
  104. A. Letocha, M. Miastkowska, E. Sikora, A. Michalczyk, M. Liszka-Skoczylas and M. Witczak, Molecules, 2024, 29, 1910 CrossRef PubMed.
  105. K. Bialik-Was, A. Kulawik-Pioro, A. Sienkiewicz, A. Letocha, J. Osinska, K. Malarz, A. Mrozek-Wilczkiewicz, M. Barczewski, A. Lanoue and N. Giglioli-Guivarc'h, Int. J. Biol. Macromol., 2024, 278, 134405 CrossRef CAS PubMed.
  106. P. Guo, L. Zhang, M. Ning, T. Cai, F. Long, Y. Yuan and T. Yue, Int. J. Food Microbiol., 2025, 434, 111137 CrossRef CAS PubMed.
  107. W. Jiang, X. Ding, Z. Zhang, W. Li, X. Li, L. Chen, Y. Tang and Y. Jiang, Food Control, 2025, 172, 106265 Search PubMed.
  108. S. Mottola, G. Viscusi, G. Oliva, G. Vigliotta, S. Cardea, G. Gorrasi and I. P. De Marco, J. CO2 Util., 2025, 91, 106282 Search PubMed.
  109. S. K. Tammina, R. Priyadarshi, A. Khan, A. Manzoor, R. Rahman and F. Banat, Int. J. Biol. Macromol., 2025, 295, 139480 CrossRef CAS PubMed.
  110. A. M. Aboulella, A. Ads, A. Alabi, M. R. Al Shehhi, K. Liao, R. R. Nair and L. Zou, Desalination, 2025, 604, 106792 CrossRef.
  111. Z. Chen, M. Hou, C. Zhang, Z. Lu, K. Zhao, M. Chen and L. Lin, Desalination, 2025, 595, 106524 Search PubMed.
  112. J. Singh, Vishavnath, V. Sharma and B. Singh, Int. J. Biol. Macromol., 2025, 295, 139659 CrossRef CAS PubMed.
  113. F. Peng, S. Hu, W. Wang, L. Deng, Q. Chen, D. Xu, C. Ruan and K. Zeng, Int. J. Biol. Macromol., 2025, 304, 140708 CrossRef CAS PubMed.
  114. R. I. Ventura-Aguilar, S. Mendoza-Acevedo, K. Shirai, S. Bautista-Baños, E. Bosquez-Molina and M. Hernández-López, Process Biochem., 2024, 146, 295 CrossRef CAS.
  115. D. Geethakumari, S. P. Veettil, S. K. Nair Chandrika, A. B. Sathyabhama, R. Joseph, S. S. Padmini, J. V. Somasekharan and S. T. Puthiyedathu, RSC Pharm., 2024, 1, 305 RSC.
  116. P. Ren, M. Liu, B. Wei, Q. Tang, Y. Wang and C. Xue, Int. J. Biol. Macromol., 2025, 300, 140334 CrossRef CAS PubMed.
  117. J. Li, X. Wan, Y. Li, P. Wang, J. Chen, W. Jin and J. Liu, Carbohydr. Polym. Technol. Appl., 2025, 9, 106592 Search PubMed.
  118. Y. Liu, Z. Xu, D. Zhang, Y. Zhang, W. Li, W. Liu and X. Li, Int. J. Biol. Macromol., 2025, 287, 138415 CrossRef CAS PubMed.
  119. B. Mabate, C. D. Daub, S. Malgas and B. I. Pletschke, Algal Res., 2025, 85, 106635 Search PubMed.
  120. W. Jin, C. Lu, Y. Zhu, J. Zhao, W. Zhang, L. Wang, R. J. Linhardt, C. Wang and F. Zhang, Carbohydr. Polym., 2023, 299, 120176 CrossRef CAS PubMed.
  121. J. Y. Chiang, T. H. Lin, J. X. Cheng and W. Y. Pan, Int. J. Biol. Macromol., 2025, 306, 141336 CrossRef CAS PubMed.
  122. X. Zhou, Y. Zhang, L. Wei, Y. Yang, B. Wang, C. Liu, J. Bai and C. Wang, Food Chem., 2025, 465, 141998 CrossRef CAS PubMed.
  123. S. Zhu, Z. Zhou, X. Chen, W. Zhu, M. Yang, M. Yu, J. Sun, Y. Zuo, J. He and H. Pan, Carbohydr. Polym., 2025, 348, 122805 CrossRef CAS PubMed.
  124. B. Lowe, J. Venkatesan, S. Anil, M. S. Shim and S. K. Kim, Int. J. Biol. Macromol., 2016, 93, 1479 CrossRef CAS PubMed.
  125. Y. Wang, Y. Zhao, X. Wang, Y. Xie, L. Bai and S. Guan, Int. J. Biol. Macromol., 2024, 255, 128044 CrossRef CAS PubMed.
  126. Y. Yao, A. M. Zaw, D. E. J. Anderson, M. T. Hinds and E. K. F. Yim, Biomaterials, 2020, 249, 120011 CrossRef CAS PubMed.
  127. Y. Yao, A. M. Zaw, D. E. J. Anderson, Y. Jeong, J. Kunihiro, M. T. Hinds and E. K. F. Yim, Bioact. Mater., 2023, 22, 535 CAS.
  128. Z. Ye, Y. Li, Y. Sun, H. Ye, J. Tang, G. Cao, Z. Feng, Y. Bao, Y. Zeng and Z. Pan, et al., Int. J. Biol. Macromol., 2025, 292, 139153 CrossRef CAS PubMed.
  129. A. F. Leitzke, D. T. Bueno, C. Jansen-Alves, T. Trindade, N. S. Pedra, L. R. Santana, F. M. Stefanello, E. da Rosa Zavareze, S. Borsuk and N. L. V. Carreno, et al., Int. J. Biol. Macromol., 2025, 306, 141788 CrossRef CAS PubMed.
  130. Q. Chen, L. Kou, F. Wang and Y. Wang, Carbohydr. Polym., 2019, 225, 115211 CrossRef CAS PubMed.
  131. I. P. S. Fernando, K. K. A. Sanjeewa, H. G. Lee, H. S. Kim, A. Vaas, H. I. C. De Silva, C. M. Nanayakkara, D. T. U. Abeytunga, W. W. Lee and D. S. Lee, et al., Int. J. Biol. Macromol., 2020, 159, 773 CrossRef CAS PubMed.
  132. J. W. Kang, S. H. Hyun, H. M. Kim, S. Y. Park, J. A. Lee, I. C. Lee and J. S. Bae, J. Cosmet. Dermatol., 2024, 23, 1365 CrossRef PubMed.
  133. L. Wang, T. U. Jayawardena, J. Hyun, K. Wang, X. Fu, J. Xu, X. Gao, Y. Park and Y. J. Jeon, Int. J. Biol. Macromol., 2023, 225, 1021 CrossRef CAS PubMed.
  134. V. Jesumani, H. Du, P. Pei, M. Aslam and N. Huang, PLoS One, 2020, 15, e0227308 CrossRef CAS PubMed.
  135. J. Matusiak, U. Maciolek, M. Kosinska-Pezda, D. Sternik, J. Orzel and E. Grzadka, Int. J. Mol. Sci., 2022, 23, 805 CrossRef CAS PubMed.
  136. J. Han, Y. Pang and X. Shen, Int. J. Biol. Macromol., 2025, 301, 140450 CrossRef CAS PubMed.
  137. Z. Wei, Y. Ou, J. Wang and B. Zheng, Int. J. Biol. Macromol., 2022, 215, 235 CrossRef CAS PubMed.
  138. N. Xu, L. Zhang, P. Wu, Y. Wang, G. Zhang and X. Wang, Food Res. Int., 2025, 208, 116025 CrossRef CAS PubMed.
  139. B. Venardou, J. V. O'Doherty, S. Maher, M. T. Ryan, V. Gath, R. Ravindran, C. Kiely, G. Rajauria, M. Garcia-Vaquero and T. Sweeney, J. Anim. Sci. Biotechnol., 2022, 13, 39 CrossRef CAS PubMed.
  140. H. A. Mahgoub, M. A. M. El-Adl and C. J. Martyniuk, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2021, 245, 109035 CAS.
  141. N. Tabassum, F. Khan, G. J. Jeong, D. Oh and Y. M. Kim, Appl. Microbiol. Biotechnol., 2024, 108, 203 CrossRef CAS PubMed.
  142. W. Jin, X. He, W. Wu, Y. Bao, S. Wang, M. Cai, W. Zhang, C. Wang, F. Zhang and R. J. Linhardt, et al., Int. J. Biol. Macromol., 2020, 163, 776 CrossRef CAS PubMed.
  143. H. A. Ha, A. S. Aloufi and B. Parveen, Environ. Res., 2024, 252, 118836 CrossRef CAS PubMed.
  144. R. Yu, Z. Song, L. Jin, L. Jiao, H. Liu, S. Zhang, Y. Hu, Y. Sun, E. Li and G. Zhao, et al., Int. J. Biol. Macromol., 2025, 292, 139157 CrossRef CAS PubMed.
  145. M. D. Christensen, L. Allahgholi, J. M. Dobruchowska, A. Moenaert, H. Guethmundsson, O. Friethjonsson, E. N. Karlsson, G. O. Hreggviethsson and J. Freysdottir, Int. J. Biol. Macromol., 2025, 306, 141287 CrossRef CAS PubMed.
  146. Y. Cui, L. Zhu, Y. Li, S. Jiang, Q. Sun, E. Xie, H. Chen, Z. Zhao, W. Qiao and J. Xu, et al., Carbohydr. Polym., 2021, 255, 117389 CrossRef CAS PubMed.
  147. Y. F. Li, V. Udayakumar, M. Sathuvan, Y. Liu, X. Liu, Y. Q. Zhang, W. Y. Ma, W. Zhang, S. Tang and K. L. Cheong, Carbohydr. Polym., 2022, 278, 118898 CrossRef CAS PubMed.
  148. Z. Zou, Y. Gu, W. Yang, M. Liu, J. Han and S. Zhao, Int. J. Biol. Macromol., 2021, 172, 241 CrossRef CAS PubMed.
  149. A. M. S. Costa, J. M. M. Rodrigues, M. M. Perez-Madrigal, M. M. Dove and J. F. Mano, J. Am. Chem. Soc., 2020, 142, 19689 CrossRef CAS PubMed.
  150. J. H. Ahn, D. W. Kim, C. W. Park, B. Kim, H. Sim, H. S. Kim, T. K. Lee, J. C. Lee, G. E. Yang and Y. Her, et al., Mar. Drugs, 2020, 18, 345 CrossRef CAS PubMed.
  151. T. K. Lee, D. W. Kim, J. H. Ahn, C. H. Lee, J. C. Lee, S. S. Lim, I. J. Kang, S. Hong, S. Y. Choi and M. H. Won, et al., Mar. Drugs, 2022, 20, 669 CrossRef CAS PubMed.
  152. N. Meng, Z. Kang, P. Jiang, D. Wu, Y. Bao and X. Chen, Int. J. Biol. Macromol., 2025, 300, 140248 CrossRef CAS PubMed.
  153. J. Su, S. He, S. Lei, K. Huang, C. Li, Y. Zhang and H. Zeng, Food Hydrocolloids, 2024, 147, 109380 CrossRef CAS.
  154. Z. Wu, J. Zhao, H. An, Y. Wang, J. Shao, H. Weng, X. Chen and W. Zhang, Fish Shellfish Immunol., 2024, 144, 109271 CrossRef CAS PubMed.
  155. G. Yin, W. Li, Q. Lin, X. Lin, J. Lin, Q. Zhu, H. Jiang and Z. Huang, Fish Shellfish Immunol., 2014, 41, 402 CrossRef CAS PubMed.
  156. D. Espinoza, D. Laporte, F. Martinez, A. M. Sandino, N. Valdes, A. Moenne and M. Imarai, Int. J. Biol. Macromol., 2024, 282, 136875 CrossRef CAS PubMed.
  157. A. Taghikhani, M. Babazadeh, S. Davaran and E. Ghasemi, Colloids Surf., B, 2024, 243, 114122 CrossRef CAS PubMed.
  158. A. D. Premarathna, T. A. E. Ahmed, V. Rjabovs, R. Hammami, A. T. Critchley, R. Tuvikene and M. T. Hincke, Int. J. Biol. Macromol., 2024, 260, 129433 CrossRef CAS PubMed.
  159. W. Lim, G. J. Kim, H. W. Kim, J. Lee, X. Zhang, M. G. Kang, J. W. Seo, J. M. Cha, H. J. Park and M. Y. Lee, et al., Polymers, 2020, 12, 2377 CrossRef CAS PubMed.
  160. M. Ataie, J. Nourmohammadi and E. Seyedjafari, Int. J. Biol. Macromol., 2022, 206, 861 CrossRef CAS PubMed.
  161. M. Alvarez-Vinas, F. Zamboni, M. D. Torres, M. N. Collins and H. Dominguez, Int. J. Biol. Macromol., 2024, 266, 131456 CrossRef CAS PubMed.
  162. L. F. B. Nogueira, M. A. E. Cruz, M. T. de Melo, B. C. Maniglia, F. Caroleo, R. Paolesse, H. B. Lopes, M. M. Beloti, P. Ciancaglini and A. P. Ramos, et al., Biomacromolecules, 2023, 24, 1258 CrossRef CAS PubMed.
  163. A. R. Rudke, C. J. de Andrade and S. R. S. Ferreira, J. Supercrit. Fluids, 2025, 217, 106454 CrossRef CAS.
  164. S. S. Moghadam, M. S. M. Meiguni, M. Salami, G. Askari, Z. Emam-Djomeh, M. Miran, H. S. Buttar and C. Brennan, Food Res. Int., 2024, 197, 115221 CrossRef PubMed.
  165. Y. C. Chang, C. H. Lin, H. J. Liu and J. C. Jian, Org. Electron., 2023, 120, 106818 CrossRef CAS.
  166. H. Thevanayagam, S. M. Mohamed, W.-L. Chu and Z. Eshak, Malays. J. Sci., 2022, 41, 28 CrossRef CAS.
  167. Z. Guo, X. Feng, J. Han, T. Zhong, Z. Zheng, Y. Xiao and X. Yu, Food Biosci., 2025, 64, 105921 CrossRef CAS.
  168. Y. Yun, X. Cheng, J. Xu, Y. Wang, H. Jin, J. Li and L. Wang, Food Hydrocolloids, 2025, 163, 111077 CrossRef CAS.
  169. S. Lin, X. Li, H. Lv, B. Kong, C. Cao, F. Sun, Q. Liu and X. Huang, Food Hydrocolloids, 2025, 164, 111234 CrossRef CAS.
  170. S. Wang, X. Zheng, L. Zheng, Y. Yang, D. Xiao, H. Zhang, B. Ai and Z. Sheng, Food Chem., 2023, 429, 136583 CrossRef CAS PubMed.
  171. K. L. Thye, W. Wan Abdullah, Z. N. Balia Yusof, C. Y. Wee, J. Ong-Abdullah, J. Y. Loh, W. H. Cheng, D. U. Lamasudin and K. S. Lai, Sci. Rep., 2022, 12, 19639 CrossRef CAS PubMed.
  172. K. Nandal, V. Vaid, R. Rahul, P. Saini, D. Devanshi, R. K. Sharma, V. Joshi, R. Jindal and H. S. Mittal, Ind. Crops Prod., 2025, 225, 120587 CrossRef CAS.
  173. G. Sason, E. Jurkevitch and A. Nussinovitch, Appl. Microbiol. Biotechnol., 2023, 107, 81 CrossRef CAS PubMed.
  174. M. J. Kubra, T. Ahmed, M. S. Rahaman, S. M. Hasnine, S. Sultana, F. Mortuza, N. Sultana and M. A. Alam, Int. J. Biol. Macromol., 2025, 306, 141471 CrossRef CAS PubMed.
  175. L. Zhang, Q. Xiao, Z. Xiao, Y. Zhang, H. Weng, F. Chen and A. Xiao, Carbohydr. Polym., 2023, 308, 120644 CrossRef CAS PubMed.
  176. J. Li, B. Zhang, B. Wang and X. Zhang, J. Mater. Res. Technol., 2022, 21, 4876 CrossRef CAS.
  177. S. M. H. Gillani, A. Mughal, R. A. Malik, H. Alrobei, I. AlBaijan and M. A. Ur Rehman, Mater. Lett., 2024, 377, 137357 CrossRef.
  178. G. Ranalli, E. Zanardini, L. Rampazzi, C. Corti, A. Andreotti, M. P. Bosch-Roig, P. Lustrato, C. Giantomassi and D. Zari, et al., J. Appl. Microbiol., 2019, 126, 1785 CrossRef CAS PubMed.
  179. I. Garcia-Orue, E. Santos-Vizcaino, J. Uranga, K. de la Caba, P. Guerrero, M. Igartua and R. M. Hernandez, J. Mater. Chem. B, 2023, 11, 6896 RSC.
  180. A. Aizaz, M. H. Nawaz, H. Shafique, M. H. Ur Rehman, M. E. Khan, M. Abbas, T. Vayalpurayil and M. A. S. Ur Rehman, J. Drug Delivery Sci. Technol., 2024, 100, 106017 CrossRef CAS.
  181. R. Boran Gulen, Int. J. Biol. Macromol., 2025, 306, 141673 CrossRef CAS PubMed.
  182. L. Du, Y. Ru, H. Weng, Y. Zhang, J. Chen, A. Xiao and Q. Xiao, Carbohydr. Polym., 2024, 340, 122293 CrossRef CAS PubMed.
  183. J. Zhao, T. Liu, K. Xia, X. Liu and X. Zhang, Food Packag. Shelf Life, 2022, 34, 100936 CrossRef CAS.
  184. S. Roy and J. W. Rhim, Colloids Surf., B, 2021, 207, 111999 CrossRef CAS PubMed.
  185. V. Kumar, M. Nanda and M. Verma, Bioresour. Technol., 2017, 243, 163 CrossRef CAS PubMed.
  186. A. Bassi, P. Kalakonda and I. S. Hasan, Inorg. Chem. Commun., 2024, 170, 113499 CrossRef CAS.
  187. R. W. Jiang, X. G. Du, X. Zhang, X. Wang, D. Y. Hu, T. Meng, Y. L. Chen, M. Y. Geng and J. K. Shen, Acta Pharmacol. Sin., 2013, 34, 1585 CrossRef CAS PubMed.
  188. M. Zhang, W. Han, L. Qiao, D. Li, Y. Ding, Y. Sun, L. Li, P. Wang and X. Wang, Carbohydr. Polym., 2025, 348, 122778 CrossRef CAS PubMed.
  189. N. Florez-Fernandez, A. Rodriguez-Coello, T. Latire, N. Bourgougnon, M. D. Torres, A. Bujan, M. Muinos, A. Muinos, R. Meijide-Failde and F. J. Blanco, et al., Int. J. Biol. Macromol., 2023, 253, 126936 CrossRef CAS PubMed.
  190. S. t N. Magwaza, V. F. Salau, K. A. Olofinsan and M. S. Islam, Sci. Afr., 2025, 27, e02518 CAS.
  191. T. M. Don, M. Chen, I. C. Lee and Y. C. Huang, Int. J. Biol. Macromol., 2022, 207, 90 CrossRef CAS PubMed.
  192. S. Kesavan, K. S. Meena, S. A. Sharmili, M. Govindarajan, N. S. Alharbi, S. M. Kadaikunnan, J. M. Khaled, A. S. Alobaidi, K. F. Alanzi and B. Vaseeharan, J. Drug Delivery Sci. Technol., 2021, 65, 102760 CrossRef CAS.
  193. K. Madub, N. Goonoo, F. Gimie, I. Ait Arsa, H. Schonherr and A. Bhaw-Luximon, Carbohydr. Polym., 2021, 251, 117025 CrossRef CAS PubMed.
  194. X. Liu, K. Yu, S. Cheng, T. Ren, M. Maitusong, F. Liu, J. Chen, Y. Qian, D. Xu and G. Zhu, et al., Mater. Sci. Eng., C, 2021, 128, 112337 CrossRef CAS PubMed.
  195. M. A. Madany, M. S. Abdel-Kareem, A. K. Al-Oufy, M. Haroun and S. A. Sheweita, Int. J. Biol. Macromol., 2021, 177, 401 CrossRef CAS PubMed.
  196. A. Terezaki, S. Kikionis, E. Ioannou, I. Sfiniadakis, L.-A. Tziveleka, A. Vitsos, V. Roussis and M. Rallis, J. Drug Delivery Sci. Technol., 2022, 74, 103535 CrossRef CAS.
  197. E. Sulastri, R. Lesmana, M. S. Zubair, A. F. Abdelwahab Mohammed, K. M. Elamin and N. Wathoni, Heliyon, 2023, 9, e18044 CrossRef CAS PubMed.
  198. A. Morelli, M. Betti, D. Puppi and F. Chiellini, Carbohydr. Polym., 2016, 136, 1108 CrossRef CAS PubMed.
  199. H. Wang, Z. Cao, L. Yao, T. Feng, S. Song and M. Sun, Foods, 2023, 12, 1622 CrossRef CAS PubMed.
  200. D. Liu, Y. Ouyang, R. Chen, M. Wang, C. Ai, H. R. El-Seedi, M. M. R. Sarker, X. Chen and C. Zhao, Int. J. Biol. Macromol., 2022, 194, 422 CrossRef CAS PubMed.
  201. M. B. de Freitas, L. G. Ferreira, C. Hawerroth, M. E. Duarte, M. D. Noseda and M. J. Stadnik, Carbohydr. Polym., 2015, 133, 384 CrossRef CAS PubMed.
  202. A. C. Velho, P. Dall'Asta, M. C. de Borba, M. Magnin-Robert, P. Reignault, A. Siah, M. J. Stadnik and B. Randoux, Plant Physiol. Biochem., 2022, 184, 14 CrossRef CAS PubMed.
  203. M. Ponce, V. Anguis and C. Fernandez-Diaz, Fish Shellfish Immunol., 2024, 146, 109399 CrossRef CAS PubMed.
  204. O. H. Dario Rafael, Z. G. Luis Fernando, A. P. Trejo, V. L. Pedro Alberto, G. S. Guadalupe and P. P. Jiménez, Carbohydr. Res., 2019, 486, 107836 CrossRef CAS PubMed.
  205. M. Vijayakumar, K. Priya, S. Ilavenil, B. Janani, V. Vedarethinam, T. Ramesh, M. V. Arasu, N. A. Al-Dhabi, Y. O. Kim and H. J. Kim, Int. J. Biol. Macromol., 2020, 165, 1402 CrossRef CAS PubMed.
  206. K. Azuma, T. Osaki, S. Ifuku, H. Saimoto, T. Tsuka, T. Imagawa, Y. Okamoto and S. Minami, Carbohydr. Polym., 2012, 90, 197 CrossRef CAS PubMed.
  207. B. Bi, H. Liu, W. Kang, R. Zhuo and X. Jiang, Colloids Surf., B, 2019, 175, 614 CrossRef CAS PubMed.
  208. Y. M. Yuan, B. Bi, J. Huang, R. Zhuo and X. Jiang, Carbohydr. Polym., 2018, 192, 10 CrossRef PubMed.
  209. J. Li, D. Cai, L. Chen, L. Zhu, S. Liu, J. Cai, G. Wang, B. Wang and W. Ding, Int. J. Biol. Macromol., 2024, 271, 132713 CrossRef CAS PubMed.
  210. Q. Ding, C. Ji, T. Wang, Y. Wang and H. Yang, Int. J. Biol. Macromol., 2025, 298, 139948 CrossRef CAS PubMed.
  211. S. Danti, L. Trombi, A. Fusco, B. Azimi, A. Lazzeri, P. Morganti, M. B. Coltelli and G. Donnarumma, Int. J. Mol. Sci., 2019, 20, 11 Search PubMed.
  212. P. Morganti and G. Morganti, Clin. Dermatol., 2008, 26, 334 CrossRef PubMed.
  213. X. Yin, F. Chen, B. Han, X. Wang, W. Ding, B. Ding and J. You, Food Hydrocolloids, 2025, 163, 108738 CrossRef.
  214. S. Zhang, H. Chen, H. Ma, J. Yu, L. Liu and Y. Fan, Int. J. Biol. Macromol., 2022, 209, 737 CrossRef CAS PubMed.
  215. A. Boonmahitthisud, T. Wongjampee and S. Tanpichai, Carbohydr. Polym., 2025, 356, 123373 CrossRef CAS PubMed.
  216. Y. Zheng, X. Li, Y. Huang, H. Li, L. Chen and X. Liu, Food Hydrocolloids, 2022, 127, 107492 CrossRef.
  217. X. Zhifeng, F. Guo, Z. Chenghao, X. Wei, L. Maoyan, Q. Kun and Z. Yongqiang, Pestic. Biochem. Physiol., 2024, 206, 106197 CrossRef PubMed.
  218. J. R. Njimou, R. Mallet Tcheulo Njike, J. M. Kepdieu, C. N. Djangang, A. Talla, N. G. Elambo, J. W. Fritsky, S. A. Maicaneanu and D. Rosso, Inorg. Chem. Commun., 2025, 172, 111741 CrossRef.
  219. M. H. Sayadi and M. Nowrouzi, J. Hazard. Mater. Adv., 2025, 17, 100261 Search PubMed.
  220. B. Tousian and A. R. Khosravi, Results Chem., 2023, 6, 100994 CrossRef.
  221. M. M. H. Farahani, M. Hajiebrahimi, S. Alamdari, A. Najafzadehkhoee, G. M. Khounsaraki, M. Agheb, V. Kostiuk, A. Puskarova, M. Buckova and D. Pangallo, et al., Int. J. Biol. Macromol., 2024, 280, 135934 CrossRef CAS PubMed.
  222. E. R. Godwin, P. A. Kumar, J. Mathows, C. Govindasamy, K. S. Al-Numair, S. S. Sana, K. Chandrasekaran and P. Arulselvan, Ceram. Int., 2024, 50, 39775 CrossRef.
  223. M. Rafiq, J. Ahmed, H. A. Alturaifi, N. S. Awwad, H. A. Ibrahium, S. Mir, A. Maalik, S. Sabahat, S. Hassan and Z. U. H. Khan, Int. J. Biol. Macromol., 2024, 283, 137601 CrossRef CAS PubMed.
  224. J. Yang, K. Luo, D. Li, S. Yu, J. Cai, L. Chen and Y. Du, Int. J. Biol. Macromol., 2013, 52, 25 CrossRef CAS PubMed.
  225. X. J. Huang, D. Ge and Z. K. Xu, Eur. Polym. J., 2007, 43, 3710 CrossRef CAS.
  226. M. Holyavka, D. Faizullin, V. Koroleva, S. Olshannikova, N. Zakhartchenko, Y. Zuev, M. Kondratyev, E. Zakharova and V. Artyukhov, Int. J. Biol. Macromol., 2021, 180, 161 CrossRef CAS PubMed.
  227. X. Liao, X. Feng, Z. Xiao, G. R. Williams, X. Huang, Y. Shi, H. Qin and Y. Liu, Int. J. Biol. Macromol., 2025, 304, 140958 CrossRef CAS PubMed.
  228. K. Chen, B. Guo and J. Luo, Carbohydr. Polym., 2017, 173, 100 CrossRef CAS PubMed.
  229. X. Liu, L. Cao, C. Jiang, H. Wang, X. Zhang, Q. Liu, H. Li, Y. Tang and Y. Feng, Int. J. Biol. Macromol., 2024, 279, 135259 CrossRef CAS PubMed.
  230. Q. Ta, J. Ting, S. Harwood, N. Browning, A. Simm, K. Ross, I. Olier and R. Al-Kassas, Eur. J. Pharm. Sci., 2021, 160, 105765 CrossRef CAS PubMed.
  231. B. Lu, Y. Fu, Y. Liu, Z. Zhang, Y. Chen, J. Zhan, J. Zhang and J. Zhang, Int. J. Biol. Macromol., 2025, 294, 139523 CrossRef CAS PubMed.
  232. X. Zhang, G. Li, C. Chen, H. Fan, J. Fang, X. Wu, J. Qi and H. Li, Int. J. Biol. Macromol., 2025, 306, 141658 CrossRef CAS PubMed.
  233. L. Liao, Z. Ke, S. Li, S. Wang, X. Wang and X. Rao, Chem. Eng. J., 2025, 506, 159746 CrossRef CAS.
  234. F. Ding, L. Fu, X. Huang, J. Shi, M. Povey and X. Zou, Food Hydrocolloids, 2025, 165, 111270 CrossRef CAS.
  235. P. Liu, Y. Chen, Y. Zhang and Y. Cheng, Constr. Build. Mater., 2025, 465, 140164 CrossRef CAS.
  236. M. Wu, J. Lu, Y. Zhang, Z. Ling, R. Lu, J. Zhu, Y. Li, Y. Cai, H. Xiang and Z. Zhang, et al., Int. J. Biol. Macromol., 2025, 306, 141296 CrossRef CAS PubMed.
  237. S. Das, A. K. Chaudhari, V. K. Singh, A. K. Dwivedy and N. K. Dubey, Int. J. Biol. Macromol., 2023, 233, 123565 CrossRef CAS PubMed.
  238. Q. Zheng, D. Qin, R. Wang, W. Yan, W. Zhao, S. Shen, S. Huang, D. Cheng, C. Zhao and Z. Zhang, Int. J. Biol. Macromol., 2022, 220, 193 CrossRef CAS PubMed.
  239. J. Ahmed, M. Farouk, M. R. El-Aassar, K. A. Omran and F. M. Mohamed, Desalin. Water Treat., 2024, 320, 100899 CrossRef CAS.
  240. V. S. Tran, H. H. Ngo, W. Guo, T. H. Nguyen, T. M. L. Mai, X. H. Nguyen, T. L. A. Phan, V. T. Le, M. P. Nguyen and M. K. Nguyen, Bioresour. Technol., 2023, 385, 129384 CrossRef PubMed.
  241. X. Wang, Z. Yang, Q. Zeng, X. Wang, S. Liu, E. Wang, Y. Wu, Y. Zeng, M. He and Y. Wang, et al., Int. J. Biol. Macromol., 2025, 286, 138401 CrossRef CAS PubMed.
  242. T. Ahmed, M. Noman, H. Jiang, M. Shahid, C. Ma, Z. Wu, M. M. Nazir, M. A. Ali, J. C. White and J. Chen, et al., Nano Today, 2022, 45, 101534 CrossRef.
  243. S. Krishnan, K. Chakraborty and S. Dhara, Nat. Prod. Res., 2024, 13, 1 CrossRef PubMed.
  244. A. A. Pai, K. Chakraborty, S. Dhara, A. Raj, B. J. Kariyil and A. R., Food Biosci., 2024, 61, 103785 Search PubMed.
  245. P. H. Chung, F. H. Lin and I. H. Liu, Int. J. Biol. Macromol., 2024, 282, 137242 CrossRef CAS PubMed.
  246. G. Wu, F. Ma, Z. Liu, J. Liu, Y. Xue, M. Zhang, C. Wen, B. Tang and L. Lin, Int. J. Biol. Macromol., 2022, 220, 1104 CrossRef CAS PubMed.
  247. Y. Zhang, X. Zhou, Q. Liu, M. Shen, Y. Liu and X. Zhang, Int. J. Biol. Macromol., 2024, 279, 135535 CrossRef CAS PubMed.
  248. W. Jin, F. Zhang and R. J. Linhardt., Adv. Exp. Med. Biol., 2021, 1325, 189 CrossRef CAS PubMed.
  249. I. C. Carvalho, H. S. Mansur, A. G. Leonel, A. A. P. Mansur and Z. I. P. Lobato, Int. J. Biol. Macromol., 2021, 182, 1091 CrossRef CAS PubMed.
  250. S. He, H. Li, B. Chi, X. Zhang, Y. Wang, J. Wu and Q. Huang, Int. J. Biol. Macromol., 2024, 254, 127940 CrossRef CAS PubMed.
  251. B. Ye, Z. Cai, Q. Wang, Y. Zhang and J. Chen, Int. J. Biol. Macromol., 2023, 231, 123179 CrossRef CAS PubMed.
  252. W. Chang, L. Chen and K. Chen, Int. J. Biol. Macromol., 2024, 270, 132454 CrossRef CAS PubMed.
  253. A. M. Juncan, D. G. Moisa, A. Santini, C. Morgovan, L. L. Rus, A. L. Vonica-Tincu and F. Loghin, Molecules, 2021, 26, 4611 CrossRef PubMed.
  254. S. K. Paulose and K. Chakraborty, Food Biosci., 2025, 66, 103721 Search PubMed.
  255. K. Hirai, T. Ishii, A. Aijima, N. Yokota, Y. Miyamoto, K. Higashi, Y. Iwasaki, R. Ito, N. Higashi and H. Akiyama, Food Chem. X, 2025, 25, 102239 CrossRef CAS PubMed.
  256. M. J. Paththuwe Arachchi, A. Subash, G. B. Bamigbade, M. Abdin, N. Ulla and M. Ayyash, Trends Food Sci. Technol., 2025, 159, 306 CrossRef.
  257. Q. Song, Y. Xu, M. Zhang, L. Wu, S. Liu, Y. Lv, T. Hu, J. Zhao, X. Zhang and X. Xu, Int. J. Biol. Macromol., 2024, 279, 134660 CrossRef CAS PubMed.
  258. Q. Wang, H. Jiang, H. Zhang, W. Lu, X. Wang, W. Xu, J. Li, Y. Lv, G. Li and C. Cai, Carbohydr. Polym., 2024, 324, 121564 CrossRef CAS PubMed.
  259. S. Perveen, L. Yang, S. Zhou, B. Feng, X. Xie, Q. Zhou, D. Qian, C. Wang and F. Yin, Fish Shellfish Immunol., 2021, 114, 28 CrossRef CAS PubMed.
  260. M. Reyes-Becerril, M. Angulo, V. Sanchez, C. Guluarte and C. Angulo, Microb. Pathog., 2020, 143, 104141 CrossRef CAS PubMed.
  261. P. Prem, S. Naveenkumar, C. Kamaraj, S. Vimal, M. Kesavan, K. A. Al-Ghanim, R. Sathishkumar and V. Kumar, J. Ind. Eng. Chem., 2025, 142, 545 CrossRef CAS.
  262. G. Liu, R. Liu, Y. Shan and C. Sun, J. Biol. Chem., 2021, 297, 101133 CrossRef CAS PubMed.
  263. M. Saleh Amer, E. H. Zaghloul and M. I. A. Ibrahim, Egypt. J. Aquat. Res., 2020, 46, 363 CrossRef.
  264. P. Concórdio-Reis, M. Cardeira, A. C. Macedo, S. S. Ferreira, A. T. Serra, M. A. Coimbra, A. Amorim, M. A. M. Reis and F. Freitas, Algal Res., 2023, 70, 102934 Search PubMed.
  265. R. Kalpana, N. Sakthi Vignesh, K. Vinothini, M. Rajan, B. Ashokkumar, K. Brindhadevi, N. T. L. Chi, A. Pugazhendhi and P. Varalakshmi, Fuel, 2023, 333, 126276 CrossRef.
  266. S. K. Satpute, I. M. Banat, P. K. Dhakephalkar, A. G. Banpurkar and B. A. Chopade, Biotechnol. Adv., 2010, 28, 436 CrossRef CAS PubMed.
  267. L. Gan, X. Li, H. Zhang, R. Zhang, H. Wang, Z. Xu, B. Peng and Y. Tian, Int. J. Biol. Macromol., 2020, 156, 372 CrossRef CAS PubMed.
  268. K. S. Sran, S. S. Sundharam, S. Krishnamurthi and A. Roy Choudhury, Int. J. Biol. Macromol., 2019, 127, 240 CrossRef CAS PubMed.
  269. S. Kant Bhatia, R. Gurav, Y. K. Choi, T. R. Choi, H. J. Kim, H. S. Song, S. Mi Lee, S. Lee Park, H. Soo Lee and Y. G. Kim, Bioresour. Technol., 2021, 324, 124674 CrossRef CAS PubMed.
  270. A. Chbel, M. Rey-Méndez, J. L. Barja, A. Serrano-Delgado, A. Soukri and B. El Khalfi, Biocatal. Agric. Biotechnol., 2024, 61, 102467 Search PubMed.
  271. M. Ciani, F. Decorosi, C. Ratti, R. De Philippis and A. Adessi, New Biotechnol., 2024, 82, 33 CrossRef CAS PubMed.
  272. C. Arnosti, M. Wietz, T. Brinkhoff, J. H. Hehemann, D. Probandt, L. Zeugner and R. Amann, Annu. Rev. Mar. Sci., 2021, 13, 81 CrossRef CAS PubMed.
  273. C. Zhang and S. K. Kim, Mar. Drugs, 2010, 8, 1920 CrossRef CAS PubMed.
  274. A. Malvis Romero, J. J. Picado Morales, L. Klose and A. Liese, Molecules, 2023, 28, 6662 CrossRef PubMed.
  275. B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard and B. Henrissat, Nucleic Acids Res., 2009, 37, D233 CrossRef CAS PubMed.
  276. A. Andreu, M. Ćorović, C. Garcia-Sanz, A. S. Santos, A. Milivojević, C. Ortega-Nieto, C. Mateo, D. Bezbradica and J. M. Palomo, Catalysts, 2023, 13, 1291 CrossRef.
  277. A. Huang, X. Wu, F. Lu and F. Liu, Foods, 2024, 13, 2560 CrossRef PubMed.
  278. S. Tamadoni Jahromi and N. Barzkar, Int. J. Biol. Macromol., 2018, 120, 2147 CrossRef CAS PubMed.
  279. S. Qiu, S. Zhou, Y. Tan, J. Feng, Y. Bai, J. He, H. Cao, Q. Che, J. Guo and Z. Su, Mar. Drugs, 2022, 20, 282 CrossRef PubMed.
  280. C. Wang, J. Long, X. Li, X. Zhou, L. Chen, C. Qiu and Z. Jin, Int. J. Biol. Macromol., 2025, 295, 139552 CrossRef CAS PubMed.
  281. A. G. Hettle, C. J. Vickers and A. B. Boraston, Front. Plant Sci., 2022, 13, 837636 CrossRef PubMed.
  282. F. Xu, Q. Q. Cha, Y. Z. Zhang and X. L. Chen, Appl. Environ. Microbiol., 2021, 87, e0036821 CrossRef PubMed.
  283. J. H. Hehemann, A. B. Boraston and M. Czjzek, Curr. Opin. Struct. Biol., 2014, 28, 77 CrossRef CAS PubMed.
  284. H. D. Liu, D. Y. Ma, S. R. Shi, S. L. Song, W. L. Li, X. H. Qi and S. D. Guo, Carbohydr. Polym., 2025, 356, 123377 CrossRef CAS PubMed.
  285. Y. L. Wu, S. Wang, D. F. Yang, L. Y. Yang, Q. Y. Wang, J. Yu, N. Li and L. X. Pan, Mar. Drugs, 2022, 20, 496 CrossRef PubMed.
  286. M. I. Kusaykin, A. S. Silchenko, A. M. Zakharenko and T. N. Zvyagintseva, Glycobiology, 2016, 26, 3 CrossRef CAS PubMed.
  287. C. De Marco Verissimo, K. Cwiklinski, J. Nilsson, E. Mirgorodskaya, C. Jin, N. G. Karlsson, J. P. Dalton and C. G. Marcotte, Mol. Cell. Proteomics, 2023, 22, 100684 CrossRef CAS PubMed.
  288. N. Barzkar, V. Rungsardthong, S. T. Jahromi, Q. Laraib, R. Das, O. Babich and S. Sukhikh, Front. Mar. Sci., 2023, 10, 1129982 CrossRef.
  289. A. Sichert, C. H. Corzett and M. S. Schechter, et al., Nat. Microbiol., 2020, 5, 1026 CrossRef CAS PubMed.
  290. S. Becker, J. Tebben, S. Coffinet, K. Wiltshire, M. H. Iversen, T. Harder, K. U. Hinrichs and J. H. Hehemann, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 6599 CrossRef CAS PubMed.
  291. E. Ficko-Blean, A. Prechoux, F. Thomas, T. Rochat, R. Larocque, Y. Zhu, M. Stam, S. Genicot, M. Jam and A. Calteau, et al., Nat. Commun., 2017, 8, 1685 CrossRef PubMed.
  292. A. Labourel, M. Jam, L. Legentil, B. Sylla, J. H. Hehemann, V. Ferrieres, M. Czjzek and G. Michel, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2015, 71, 173 CrossRef CAS PubMed.
  293. W. Zhang, W. Jin, V. H. Pomin, F. Zhang and R. J. Linhardt, Front Mol. Biosci., 2022, 9, 954752 CrossRef CAS PubMed.
  294. S. Perez and O. Makshakova, Chem. Rev., 2022, 122, 15914 CrossRef CAS PubMed.
  295. V. Solanki, K. Kruger, C. J. Crawford, A. Pardo-Vargas, J. Danglad-Flores, K. L. M. Hoang, L. Klassen, D. W. Abbott, P. H. Seeberger and R. I. Amann, et al., ISME J., 2022, 16, 1818 CrossRef CAS PubMed.
  296. A. Poulhazan, M. C. Dickwella Widanage, A. Muszynski, A. A. Arnold, D. E. Warschawski, P. Azadi, I. Marcotte and T. Wang, J. Am. Chem. Soc., 2021, 143, 19374 CrossRef CAS PubMed.
  297. K. Kruger, M. Chafee, T. Ben Francis, T. Glavina Del Rio, D. Becher, T. Schweder, R. I. Amann and H. Teeling, ISME J., 2019, 13, 2800 CrossRef PubMed.
  298. S. Miksch, L. H. Orellana, M. Oggerin de Orube, S. Vidal-Melgosa, V. Solanki, J. H. Hehemann, R. Amann and K. Knittel, ISME J., 2024, 18, 192 CrossRef PubMed.
  299. Y. Gui, X. Gu, L. Fu, Q. Zhang, P. Zhang and J. Li, Front. Microbiol., 2021, 12, 631039 CrossRef PubMed.
  300. D. H. Kang, J. E. Hyeon, S. K. You, S. W. Kim and S. O. Han, J. Biotechnol., 2014, 192, 108 CrossRef CAS PubMed.
  301. X. B. Yang, X. D. Gao, F. Han, B. S. Xu, Y. C. Song and R. X. Tan, Biochimie, 2005, 87, 747 CrossRef CAS PubMed.
  302. A. U. Rathnayake, R. Abuine, Y. J. Kim and H. G. Byun, Curr. Alzheimer Res., 2019, 16, 895 CrossRef CAS PubMed.
  303. W. Chen, Z. Jia, J. Zhu, Y. Zou, G. Huang and Y. Hong, Int. J. Biol. Macromol., 2019, 140, 1116 CrossRef CAS PubMed.
  304. Y. Ye, Y. Zhang, Y. Zhou and Y. Gao, J. Agric. Food Chem., 2025, 73, 5666 CrossRef CAS PubMed.
  305. C. J. Crawford, M. Schultz-Johansen, P. Luong, S. Vidal-Melgosa, J. H. Hehemann and P. H. Seeberger, J. Am. Chem. Soc., 2024, 146, 18320 CrossRef CAS PubMed.
  306. O. J. Plante, E. R. Palmacci and P. H. Seeberger, Science, 2001, 291, 1523 CrossRef CAS PubMed.
  307. P. Kaploneka, N. Khan, K. Reppe, B. Schumann, M. Emmadi, M. P. Lisboa, F. Xu, A. D. J. Calowa, S. G. Parameswarappa, M. Witzenrath, C. L. Pereira and P. H. Seeberger, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 13353 CrossRef PubMed.
  308. B. Schumann, H. S. Hahm, S. G. Parameswarappa, K. Reppe, A. Wahlbrink, S. Govindan, P. Kaplonek, L. Pirofski, M. Witzenrath, C. Anish, C. L. Pereira and P. H. Seeberger, Sci. Transl. Med., 2017, 380, 5347 CrossRef PubMed.
  309. M. Guberman, M. Brautigam and P. H. Seeberger, Chem. Sci., 2019, 10, 5634 RSC.
  310. P. Dallabernardina, V. Benazzi, J. D. Laman, P. H. Seeberger and F. F. Loeffler, Org. Biomol. Chem., 2021, 19, 9829 RSC.
  311. Y. Zhu, M. Delbianco and P. H. Seeberger, J. Am. Chem. Soc., 2021, 143, 9758 CrossRef CAS PubMed.
  312. K. L. M. Hoang, A. Pardo-Vargas, Y. Zhu, Y. Yu, M. Loria, M. Delbianco and P. H. Seeberger, J. Am. Chem. Soc., 2019, 141, 9079 CrossRef PubMed.
  313. M. P. Bartetzko, F. Schuhmacher, H. S. Hahm, P. H. Seeberger and F. Pfrengle, Org. Lett., 2015, 17, 4344 CrossRef CAS PubMed.
  314. H. S. Hahm, F. Broecker, F. Kawasaki, M. Mietzsch, R. Heilbronn, M. Fukuda and P. H. Seeberger, Chem, 2017, 2, 114 CAS.
  315. J. Kandasamy, F. Schuhmacher, H. S. Hahm, J. C. Klein and P. H. Seeberger, Chem. Commun., 2014, 50, 1875 RSC.
  316. S. Eller, M. Collot, J. Yin, H. S. Hahm and P. H. Seeberger, Angew. Chem., Int. Ed., 2013, 52, 5858 CrossRef CAS PubMed.
  317. M. T. C. Walvoort, A. G. Volbeda, N. R. M. Reintjens, H. van den Elst, O. J. Plante, H. S. Overkleeft, G. A. van der Marel and J. D. C. Codee, Org. Lett., 2012, 14, 3770 CrossRef PubMed.
  318. M. T. C. Walvoort, H. van den Elst, O. J. Plante, L. Krock, P. H. Seeberger, H. S. Overkleeft, G. A. van der Marel and J. D. C. Codee, Angew. Chem., Int. Ed., 2012, 51, 4393 CrossRef CAS PubMed.

Footnote

Equal contribution.

This journal is © The Royal Society of Chemistry 2025
Click here to see how this site uses Cookies. View our privacy policy here.