Issue 9, 2023

Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing

Abstract

The flourishing development of flexible healthcare sensing systems is inseparable from the fundamental materials with application-oriented mechanical and electrical properties. Thanks to continuous inspiration from our Mother Nature, flexible hydrogels originating from natural biomass are attracting growing attention for their structural and functional designs owing to their unique chemical, physical and biological properties. These highly efficient architectural and functional designs enable them to be the most promising candidates for flexible electronic sensing devices. This comprehensive review focuses on the recent advances in naturally sourced hydrogels for constructing multi-functional flexible sensors and healthcare applications thereof. We first briefly introduce representative natural polymers, including polysaccharides, proteins, and polypeptides, and summarize their unique physicochemical properties. The design principles and fabrication strategies for hydrogel sensors based on these representative natural polymers are outlined after the fundamental material properties required in healthcare sensing applications are presented. We then highlight the various fabrication techniques of natural hydrogels for sensing devices, and illustrate the representative examples of wearable or implantable bioelectronics for pressure, strain, temperature, or biomarker sensing in the field of healthcare systems. Finally, concluding remarks on challenges and prospects in the development of natural hydrogel-based flexible sensors are provided. We hope that this review will provide valuable information for the development of next-generation bioelectronics and build a bridge between the natural hydrogels as fundamental matter and multi-functional healthcare sensing as an applied target to accelerate new material design in the near future.

Graphical abstract: Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing

Article information

Article type
Review Article
Submitted
29 Sep 2022
First published
05 Apr 2023

Chem. Soc. Rev., 2023,52, 2992-3034

Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing

Z. Wang, H. Wei, Y. Huang, Y. Wei and J. Chen, Chem. Soc. Rev., 2023, 52, 2992 DOI: 10.1039/D2CS00813K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements