Issue 17, 2022

Solvent-controlled regioselective C(5)–H/N(1)–H bond alkylations of indolines and C(6)–H bond alkylations of 1,2,3,4-tetrahydroquinolines with para-quinone methides

Abstract

Solvent-promoted and -controlled regioselective bond alkylation reactions of para-quinone methides (p-QMs) with N–H free-indoline and 1,2,3,4-tetrahydroquinoline (THQ) under metal-free conditions have been developed. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent, 1,6-addition alkylation reactions of p-QMs with NH-free indolines and THQs efficiently gave C5-alkylated indolines and C6-alkylated THQs. Using catalytic amounts of HFIP in DCM, the reaction of indolines and p-QMs resulted in the alkylation of indolines at the N1-position. HFIP plays two roles in the reactions: converting the indoline and THQ into bidentate nucleophiles and activating the p-QMs to achieve the 1,6-addition alkylation via hydrogen bond clusters. The indoline and THQ act as a C-nucleophile due to the H-bond clusters between HFIP and the nitrogen atom, whereas upon using catalytic amounts of HFIP, the compounds act as an N-nucleophile. All alkylation products were transformed into the corresponding indoles and quinolines via oxidation in the presence of diethyl azodicarboxylate (DEAD). Furthermore, the synthetic utilities have been showcased with both the removal of the tert-butyl groups from the C5-alkylated indole products and submission to their Suzuki coupling reactions.

Graphical abstract: Solvent-controlled regioselective C(5)–H/N(1)–H bond alkylations of indolines and C(6)–H bond alkylations of 1,2,3,4-tetrahydroquinolines with para-quinone methides

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2022
Accepted
05 Apr 2022
First published
06 Apr 2022

Org. Biomol. Chem., 2022,20, 3570-3588

Solvent-controlled regioselective C(5)–H/N(1)–H bond alkylations of indolines and C(6)–H bond alkylations of 1,2,3,4-tetrahydroquinolines with para-quinone methides

V. Akyildiz, F. Lafzi, H. Kilic and N. Saracoglu, Org. Biomol. Chem., 2022, 20, 3570 DOI: 10.1039/D2OB00035K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements