Issue 67, 2022

2D Network overtakes 3D for photocatalytic hydrogen evolution

Abstract

3-Dimensional (3D) cyanide coordination polymers, typically known as Prussian blue Analogues (PBAs), have received great attention in catalysis due to their stability, easily tuned metal sites, and porosity. However, their high crystallinities and relatively low number of surface-active sites significantly hamper their intrinsic catalytic activities. Herein, we report the utilization of a 2-dimensional (2D) layered cobalt tetracyanonickelate, [Co–Ni], for the reduction of protons to H2. Relying on its exposed facets, layered morphology, and abundant surface-active sites, [Co–Ni] can efficiently convert water and sunlight to H2 in the presence of a ruthenium photosensitizer (Ru PS) with an optimal evolution rate of 30 029 ± 590 μmol g−1 h−1, greatly exceeding that of 3D Co–Fe PBA [Co–Fe] and Co–Co PBA [Co–Co]. Furthermore, [Co–Ni] retains its structural integrity throughout a 6 hour photocatalytic cycle, which is confirmed by XPS, PXRD, and Infrared analysis. This recent work reveals the excellent morphologic properties that promote [Co–Ni] as an attractive catalyst for the hydrogen evolution reaction (HER).

Graphical abstract: 2D Network overtakes 3D for photocatalytic hydrogen evolution

Supplementary files

Article information

Article type
Communication
Submitted
23 May 2022
Accepted
14 Jul 2022
First published
18 Jul 2022

Chem. Commun., 2022,58, 9341-9344

2D Network overtakes 3D for photocatalytic hydrogen evolution

A. A. Ahmad, T. G. Ulusoy Ghobadi, E. Ozbay and F. Karadas, Chem. Commun., 2022, 58, 9341 DOI: 10.1039/D2CC02912J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements