Issue 12, 2019

Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant

Abstract

Biomass transformation into value-added products offers a solution to the end-up issue of agricultural and forestry wastes and provides a sustainable approach towards a circular material economy. Here we report a green fractionation technology for converting alkali lignin (AL) into graphene quantum dots (GQDs) which are glowing carbon nano-crystals as new guiding light for a spectrum of novel applications. AL is rapidly fractionated by an acid hydrotrope and recovered with an aromatic functionality as GQDs under mild conditions. In addition, the acid-hydrotrope can be easily recycled to restore its environmental sustainability. The as-prepared lignin-based GQDs (LGQDs) exhibit a nanoscopic few-layer structure, along with bright fluorescence, water solubility, long-term photostability, and excellent biocompatibility. Benefitting from these alluring properties, LGQDs are applied as sensitive fluorescence-switchable probes for detecting H2O2 which is a common physiological oxidant in biological systems. They exhibit bright excitonic fluorescence, along with significant fluorescence quenching in response to the presence of H2O2 with a concentration as low as 0.13 nM. The ultrasensitivity of LGQDs for detecting H2O2 is explored by density functional theory (DFT) calculations and the results show that the fluorescence mechanism of LGQDs is dominated by the intramolecular charge transfer (ICT) behavior, which is proposed for the first time and subsequently validated by a series of control experiments. This study offers a promising and sustainable approach for synthesis of S, N co-doped graphene quantum dots as ultrasensitive biosensors from low-cost biomass. In addition, the theoretical results highlight a deep understanding on the photoluminescence phenomenon of LGQDs and more generally biomass-based GQDs.

Graphical abstract: Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2019
Accepted
13 May 2019
First published
13 May 2019

Green Chem., 2019,21, 3343-3352

Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant

R. Wang, G. Xia, W. Zhong, L. Chen, L. Chen, Y. Wang, Y. Min and K. Li, Green Chem., 2019, 21, 3343 DOI: 10.1039/C9GC01012B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements