Open Access Article
This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence

Metal-free catalytic hydrocarboxylation of hexafluorobut-2-yne

Ji-Jun Zeng, Bo Zhao, Xiao-Bo Tang, Sheng Han, Zhi-Qiang Yang, Ze-Peng Liu, Wei Zhang* and Jian Lu*
State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China. E-mail: lujian204@263.net; Zhangwei_204@163.com

Received 30th August 2021 , Accepted 14th November 2021

First published on 6th December 2021


Abstract

An efficient method for stereoselective synthesis of trifluorinated enol esters catalyzed by base was introduced. The DFT calculations and experimental results both supported the nucleophilic addition process. The protocol featured mild reaction conditions and showed a wide functional group tolerance. The one-pot simultaneous etherification and esterification of the salicylic acids further demonstrated the prospective synthetic application.


Introduction

Enol esters are versatile building blocks in organic chemistry that serve as the intermediates in various synthetic transformations, including polymerization,1 hydrogenation,2 cycloaddition,3 and cross-coupling reactions.4 The hydrocarboxylation reaction is the most efficient and atom-economical route to prepare enol esters.5 Hexafluorobut-2-yne (HFBY) is a cost-effective industrial intermediate for the production of Z-1,1,1,4,4,4-hexafluorobutene (Z-HFO-1336mzz).6 As part of our ongoing research on fluorocarbon chemistry, the previous works demonstrated the hydrophenoxylation of HFBY.7 Considering the electrophilicity,8 it was speculated that HFBY reacted readily with nucleophiles to directly synthesize trifluorinated enol esters.

The classical methods to prepare trifluorinated enol esters rely on ruthenium catalysts,9 and most are limited to the substrate scope and mild reaction conditions, while the hydrocarboxylation of HFBY is an exception.10 Thus, it would be very appealing that the esterification reaction is carried out using a metal-free catalyst with high stereoselectivity. These experimental results strongly promoted the re-study of the hydrocarboxylation of HFBY. Herein, the stereoselective synthesis of trifluorinated enol esters under a mild reaction condition was reported.

Results and discussion

The studies were initiated using 3-nitrobenzoic acid (1a) as a model substrate (Table 1) Scheme 1. 3-Nitrobenzoic acid was treated with HFBY (2) in the presence of 10 mol% of either triethylamine (Et3N) or tetramethylethylenediamine (TMEDA) in the DCM at room temperature for 10 hours (Table 1, entry 1 and 2), while there was no reaction. Unexpectedly, when the tertiary amine was converted to 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), the product (Z)-1,1,1,4,4,4-hexafluorobut-2-en-2-yl-3-nitrobenzoate (3a) was separated in 29% yield (Table 1, entry 3). DBU was the base of choice among the tested bases (entries 4–6). Unfortunately, the yield was not improved as the DBU loading increased to 20 mol% (entry 7). Acetone performed slightly better than other solvents, and 3a was generated in 62% yield (entries 8–12).
image file: d1ra06526b-s1.tif
Scheme 1 Proposed reaction mechanism.
Table 1 Optimization for the hydrocarboxylationa

image file: d1ra06526b-u1.tif

Entry Catalyst Loading (mol%) Solvent Yieldb (%)
a Reaction conditions: 1 (1 mmol), 2 (2–3 mmol), solvent (2 mL), 25 °C, 10 h.b Yields determined by 1H and 19F NMR, 4′-fluoroacetophenone as internal standard.c Isolated yields.
1 Et3N 10 DCM
2 TMEDA 10 DCM
3 MTBD 10 DCM 32 (29c)
4 DABCO 10 DCM 17
5 DBN 10 DCM 7
6 DBU 10 DCM 54
7 DBU 20 DCM 17
8 DBU 10 1,4-Dioxane 54
9 DBU 10 Acetone 62
10 DBU 10 HFIP 54
11 DBU 10 CH3CN 58
12 DBU 10 Toluene 50


The generality of benzoic acid was examined by optimizing the reaction conditions. Carboxylic acids with electron-donating groups on the aromatic ring (3b and 3c) participated in the reaction smoothly to produce enol esters with high stereoselectivity. The amine or amide groups in the acids had a slight effect on the reaction (3d and 3e). The steric hinderance had little effect, and bulk 3f and 3g both worked well. The reaction with p-halo substrates gave products 3i and 3j in moderate yield. However, fluorobenzoic acid generated the desired product 3h in only 43% yield, which was due to the electronic effect11 and a low boiling point of the product. The scope was not limited to electron-rich substrates, and a variety of electron-poor acids afforded enol esters in moderate yields (3k–3o). 2-Naphthoic acid proceeded smoothly, which furnished the corresponding products in a 94% yield (3o) (Tables 2 and 3).

Table 2 addition of benzoic acids into HFBY catalysed by DBUa
a Reaction conditions: 1 (1 mmol), 2 (2–3 mmol), DBU (10 mol%), acetone (2 mL), 25 °C, 10 h, isolated yields.
image file: d1ra06526b-u2.tif


Table 3 addition of heterocyclic acids into HFBY catalysed by DBUa
a Reaction conditions: 1 (1 mmol), 2 (2–3 mmol), DBU (10 mol%), acetone (2 mL), 25 °C, 10 h, isolated yields.
image file: d1ra06526b-u3.tif


The reactions of HFBY with heterocyclic acids were extended. Pyridine, furan, and thiophene substituents were well tolerated, furnishing the moderate to good yields under standard conditions (3q–3s). The one-pot difunctionalization of salicylic acids reacted well under standard conditions,12 which indicated a broad application of the protocol.

A plausible reaction mechanism was proposed based on DFT calculations (Scheme 1). The nucleophilic addition and Z selectivity under DBU were well supported.13 First, acid anion II was generated by the acid-base neutralization reaction between benzoic acid and DBU. Due to the high electrophilicity of the triple bonds, the anion was added to the hexafluorobut-2-yne to produce butenyl anion IV. Finally, IV abstracted a proton of [DBU-H]+, selectively giving the desired product 3 with the regeneration of DBU.

Conclusions

In summary, a novel and practical method for the synthesis of enol esters was reported. The reactions were carried out by the base-catalyzed hydrogenation carboxylation process with industrially available substrates, even one-pot phenoxylation and carboxylation of salicylic acids was achieved. The mechanistic studies supported the nucleophilic addition reaction and explained the excellent stereoselectivity of the products. The metal-free catalysis with mild reaction conditions and simple operation endowed the alternative esterification strategy with broad application prospects in organic synthesis.

Experimental

General

1H, 13C and 19F NMR spectra were recorded on a 500 MHz. 1H NMR chemical shifts were determined relative to internal (CH3)4Si(TMS) at δ 0.0 or to the signal of the residual protonated solvent: CDCl3 δ 7.26. 13C NMR chemical shifts were determined relative to internal TMS at δ 0.0. For the isolated compounds, 19F NMR chemical shifts were determined relative to CFCl3 at δ 0.0. Data for 1H, 13C and 19F NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). High resolution mass spectra were recorded on an HRMS-TOF instrument using EI ionization. IR spectra were collected on a Nicolet IN10 FT-IR spectrometer, and reported in terms of frequency of absorption (cm−1).

Reagents

Unless otherwise mentioned, solvents and reagents are purchased from commercial sources and used as received. 1,1,1,4,4,4-hexafluorobutyne (HFBY) is obtained by dehydrochlorination of 2-chloro-1,1,1,4,4,4-hexafluorobutene.14

Experimental procedure

The reaction was carried out in 25 mL Schlenk tube. To a solution of carboxylic acid (1 mmol) in acetone (2 mL), DBU was added. The tube was cooling in liquid nitrogen, then vacuumized and HFBY (2–3 mmol) was introduced into the tube, the reaction mixture was stirred at room temperature for 10 h. The crude product was purified by column chromatography.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-3-nitrobenzoate (3a). Yellow oil, 204 mg, 62%. 1H NMR (500 MHz, CDCl3) δ 8.94 (m, 1H), 8.56 (m, 1H), 8.45 (m, 1H), 7.79 (m, 1H), 6.43 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 160.4, 148.6, 142.6 (qq, 2JCF = 38.5 Hz, 3JCF = 5 Hz), 136.0, 130.3, 129.1, 128.5, 125.5, 120.5 (q, 1JCF = 269.6 Hz), 118.5 (q, 1JCF = 273.9 Hz), 114.2 (qq, 2JCF = 36.9 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.8 (s, CF3), −61.2 (d, JFH = 6.1 Hz, CF3). IR (KBr): 2989, 1778, 1306, 1207, 1047, 987, 847 cm−1. HRMS (EI-TOF): calcd for C11H5F6NO4 (M+) 329.0123, found 352.0018.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-methoxybenzoate (3b). Yellow oil, 314 mg, 99%. 1H NMR (500 MHz, CDCl3) δ 8.06 (d, 2H, JHH = 9 Hz), 6.98 (d, 2H, JHH = 9 Hz), 6.31 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 164.9, 161.8, 143.3 (qq, 2JCF = 37.6 Hz, 3JCF = 5 Hz), 132.9, 120.8 (q, 1JCF = 269.4 Hz), 118.8, 118.7 (q, 1JCF = 274 Hz), 114.2, 113.4 (qq, 2JCF = 36.6 Hz, 3JCF = 3.5 Hz), 55.8. 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.1 (d, JFH = 6.1 Hz, CF3). IR (KBr): 2842, 1765, 1612, 1273, 1146, 841, 648 cm−1. HRMS (EI-TOF): calcd for C12H8F6O3 (M+) 314.0378, found 314.0373.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-propylbenzoate (3c). Colorless oil, 326 mg, 99%. 1H NMR (500 MHz, CDCl3) δ 8.01 (d, 2H, JHH = 8.5 Hz), 7.31 (d, 2H, JHH = 8.5 Hz), 6.33 (q, 1H, JHF = 6.5 Hz), 2.68 (m, 2H), 1.68 (m, 2H), 0.96 (t, 3H, JHH = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 162.2, 150.6, 143.3 (qq, 2JCF = 38 Hz, 3JCF = 5 Hz), 130.7, 129.0, 124.2, 120.7 (q, 1JCF = 269.5 Hz), 118.7 (q, 1JCF = 274 Hz), 113.5 (qq, 2JCF = 36.6 Hz, 3JCF = 3.6 Hz), 38.2, 24.1, 13.6. 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.1 (d, JFH = 7.1 Hz, CF3). IR (KBr): 2962, 1765, 1612, 1273, 1153, 994, 648 cm−1. HRMS (EI-TOF): calcd for C14H12F6O2 (M+) 326.0741, found 326.0736.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-aminobenzoate (3d). Yellow oil, 263 mg, 88%. 1H NMR (500 MHz, CDCl3) δ 7.89 (d, 2H, JHH = 9 Hz), 6.66 (d, 2H, JHH = 9 Hz), 6.28 (q, 1H, JHF = 7.5 Hz), 4.28 (s, 2H). 13C NMR (125 MHz, CDCl3) δ 162.1, 152.6, 143.5 (qq, 2JCF = 37.6 Hz, 3JCF = 5 Hz), 133.1, 120.9 (q, 1JCF = 269.5 Hz), 118.9 (q, 1JCF = 274.1 Hz), 115.4, 113.9, 113.1 (qq, 2JCF = 36.5 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.0 (d, JFH = 7.5 Hz, CF3). IR (KBr): 3394, 1745, 1605, 1279, 1153, 1053, 841 cm−1. HRMS (EI-TOF): calcd for C11H7F6NO2 (M+) 299.0381, found 299.0373.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-acetamidobenzoate (3e). White solid, 211 mg, 62%. 1H NMR (500 MHz, DMSO) δ 10.45 (s, 1H), 8.02 (d, 2H, JHH = 8.5 Hz), 7.84 (d, 2H, JHH = 8.5 Hz), 7.38 (q, 1H, JHF = 7.5 Hz), 2.12 (s, 3H). 13C NMR (125 MHz, DMSO) δ 169.7, 162.1, 146.1, 142.2 (qq, 2JCF = 37.6 Hz, 3JCF = 5.3 Hz), 132.1, 121.4 (q, 1JCF = 269.4 Hz), 119.8, 119.1, 119.1 (q, 1JCF = 273.9 Hz), 115.1 (qq, 2JCF = 35.3 Hz, 3JCF = 3.4 Hz), 24.5. 19F NMR (470.0 MHz, DMSO) δ −70.8 (s, CF3), −60.5 (d, JFH = 7.1 Hz, CF3). IR (KBr): 3428, 1778, 1605, 1273, 1153, 854, 648 cm−1. HRMS (EI-TOF): calcd for C13H9F6NO3 (M+) 341.0487, found 342.0559.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-2,6-dimethoxybenzoate (3f). Yellow solid, 344 mg, 99%. 1H NMR (500 MHz, CDCl3) δ 7.36 (t, 1H, JHH = 8.5 Hz), 7.40 (d, 2H, JHH = 8.5 Hz), 6.31 (q, 1H, JHF = 7 Hz), 3.83 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 161.3, 158.4, 142.9 (qq, 2JCF = 37.7 Hz, 3JCF = 5.3 Hz), 139.2, 120.7 (q, 1JCF = 269.7 Hz), 118.7 (q, 1JCF = 274.5 Hz), 114.1 (qq, 2JCF = 37 Hz, 3JCF = 3.7 Hz), 109.6, 103.9, 56.0. 19F NMR (470.0 MHz, CDCl3) δ −71.6 (s, CF3), −60.6 (d, JFH = 5.6 Hz, CF3). IR (KBr): 2982, 1785, 1599, 1486, 1160, 1000, 655 cm−1. HRMS (EI-TOF): calcd for C13H10F6O4 (M+) 344.0483, found 344.0477.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-2,4,6-trimethylbenzoate (3g). Yellow oil, 286 mg, 88%. 1H NMR (500 MHz, CDCl3) δ 6.91 (s, 2H), 6.34 (q, 1H, JHF = 7 Hz), 2.39 (s, 6H), 2.30 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 164.4, 142.7 (qq, 2JCF = 37.6 Hz, 3JCF = 5.3 Hz), 141.7, 137.8, 129.4, 126.2, 120.8 (q, 1JCF = 269.4 Hz), 118.8 (q, 1JCF = 274.3 Hz), 114.0 (qq, 2JCF = 36.7 Hz, 3JCF = 3.7 Hz), 21.1, 20.3. 19F NMR (470.0 MHz, CDCl3) δ −71.2 (s, CF3), −60.4 (d, JFH = 6.1 Hz, CF3). IR (KBr): 2976, 1765, 1306, 1153, 987, 847, 648 cm−1. HRMS (EI-TOF): calcd for C14H12F6O4 (M+) 326.0741, found 326.0739.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-fluorobenzoate (3h). Colorless oil, 130 mg, 43%. 1H NMR (500 MHz, CDCl3) δ 8.14 (m, 2H), 7.21 (m, 2H), 6.36 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 166.9 (d, 1JCF = 256.1 Hz), 161.2, 143.0 (qq, 2JCF = 38.1 Hz, 3JCF = 5 Hz), 133.4 (d, 3JCF = 9.8 Hz), 122.9 (d, 4JCF = 3 Hz), 120.6 (q, 1JCF = 269.5 Hz), 118.6 (q, 1JCF = 274 Hz), 116.3 (d, 2JCF = 22.1 Hz), 113.7 (qq, 2JCF = 36.7 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −101.8 (s, 1F), −71.9 (s, CF3), −61.2 (d, JFH = 6.6 Hz, CF3). IR (KBr): 3115, 1772, 1605, 1160, 1053, 854, 648 cm−1. HRMS (EI-TOF): calcd for C11H5F7O2 (M+) 302.0178, found 302.0181.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-chlorobenzoate (3i). Yellow oil, 264 mg, 83%. 1H NMR (500 MHz, CDCl3) δ 8.05 (d, 2H, JHH = 9 Hz), 7.50 (d, 2H, JHH = 8.5 Hz), 6.36 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 161.4, 142.9 (qq, 2JCF = 38.1 Hz, 3JCF = 5 Hz), 141.7, 131.9, 129.4, 125.1, 120.6 (q, 1JCF = 269.5 Hz), 118.6 (q, 1JCF = 274 Hz), 113.8 (qq, 2JCF = 36.7 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.1 (d, JFH = 5.2 Hz, CF3). IR (KBr): 3115, 1778, 1592, 1160, 1007, 741, 648 cm−1. HRMS (EI-TOF): calcd for C11H5ClF6O2 (M+) 317.9882, found 317.9887.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-bromobenzoate (3j). Colorless oil, 351 mg, 97%. 1H NMR (500 MHz, CDCl3) δ 7.96 (d, 2H, JHH = 8.5 Hz), 7.68 (d, 2H, JHH = 8.5 Hz), 6.36 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 161.5, 143.0 (qq, 2JCF = 38.3 Hz, 3JCF = 5 Hz), 132.3, 131.9, 130.3, 125.7, 120.7 (q, 1JCF = 269.5 Hz), 118.6 (q, 1JCF = 273.9 Hz), 113.8 (qq, 2JCF = 36.7 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.1 (d, JFH = 6.1 Hz, CF3). IR (KBr): 3114, 1778, 1599, 1153, 1000, 741, 655 cm−1. HRMS (EI-TOF): calcd for C11H5BrF6O2 (M+) 361.9377, found 361.9375.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-2-nitrobenzoate (3k). Yellow solid, 271 mg, 77%. 1H NMR (500 MHz, CDCl3) δ 8.04 (m, 1H), 7.79 (m, 3H), 6.40 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 160.7, 148.0, 142.3 (qq, 2JCF = 38.6 Hz, 3JCF = 5 Hz), 133.4, 130.1, 124.5, 124.4, 123.9, 120.6 (q, 1JCF = 269.6 Hz), 118.4 (q, 1JCF = 274.1 Hz), 113.8 (qq, 2JCF = 36.9 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.5 (s, CF3), −60.9 (d, JFH = 6.6 Hz, CF3). IR (KBr): 3115, 1792, 1539, 1153, 1047, 847, 641 cm−1. HRMS (EI-TOF): calcd for C11H5F6NO4 (M+) 329.0123, found 352.0018.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-nitrobenzoate (3l). Yellow solid, 191 mg, 58%. 1H NMR (500 MHz, CDCl3) δ 8.39 (d, 2H, JHH = 9 Hz), 8.31 (d, 2H, JHH = 9 Hz), 6.42 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 160.6, 151.6, 142.6 (qq, 2JCF = 38.5 Hz, 3JCF = 5 Hz), 131.9, 131.8, 124.0, 120.4 (q, 1JCF = 269.7 Hz), 118.5 (q, 1JCF = 273.9 Hz), 114.2 (qq, 2JCF = 36.9 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.5 (s, CF3), −60.9 (d, JFH = 6.6 Hz, CF3). IR (KBr): 3115, 1765, 1539, 1273, 1080, 867, 714 cm−1. HRMS (EI-TOF): calcd for C11H5F6NO4 (M+) 329.0123, found 352.0017.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-formylbenzoate (3m). Yellow oil, 218 mg, 70%. 1H NMR (500 MHz, CDCl3) δ 10.16 (s, 1H), 8.28 (d, 2H, JHH = 8 Hz), 8.05 (d, 2H, JHH = 8.5 Hz), 6.42 (q, 1H, JHF = 6.6 Hz). 13C NMR (125 MHz, CDCl3) δ 191.1, 161.2, 142.8 (qq, 2JCF = 38.3 Hz, 3JCF = 5 Hz), 140.4, 131.4, 131.2, 129.8, 120.6 (q, 1JCF = 269.5 Hz), 118.5 (q, 1JCF = 273.9 Hz), 113.9 (qq, 2JCF = 36.9 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.3 (d, JFH = 6.6 Hz, CF3). IR (KBr): 3115, 2842, 1778, 1705, 1160, 847, 655 cm−1. HRMS (EI-TOF): calcd for C12H6F6O3 (M+) 312.0221, found 311.0146.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl 4-cyanobenzoate (3n). White solid, 216 mg, 70%. 1H NMR (500 MHz, CDCl3) δ 8.22 (d, 2H, JHH = 8.5 Hz), 7.84 (d, 2H, JHH = 8.5 Hz), 6.40 (q, 1H, JHF = 6.5 Hz). 13C NMR (125 MHz, CDCl3) δ 160.8, 142.7 (qq, 2JCF = 38.5 Hz, 3JCF = 5 Hz), 132.7, 131.1, 130.4, 120.5 (q, 1JCF = 269.7 Hz), 118.5 (q, 1JCF = 273.8 Hz), 118.3, 117.4, 114.2 (qq, 2JCF = 36.7 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.2 (d, JFH = 5.6 Hz, CF3). IR (KBr): 2244, 1759, 1273, 1153, 1000, 854, 648 cm−1. HRMS (EI-TOF): calcd for C12H5F6NO2 (M+) 309.0224, found 308.0153.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-(trifluoromethyl)benzoate (3o). White solid, 299 mg, 85%. 1H NMR (500 MHz, CDCl3) δ 8.24 (d, 2H, JHH = 8 Hz), 7.80 (d, 2H, JHH = 8 Hz), 6.39 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 161.2, 142.8 (qq, 2JCF = 38.4 Hz, 3JCF = 5 Hz), 136.3 (q, 2JCF = 32.9 Hz), 131.1, 129.9, 126.0 (q, 3JCF = 3.8 Hz), 123.3 (q, 1JCF = 271.5 Hz), 120.6 (q, 1JCF = 269.6 Hz), 118.5 (q, 1JCF = 273.9 Hz), 114.0 (qq, 2JCF = 36.7 Hz, 3JCF = 3.5 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −63.5 (s, 3F), −61.2 (d, JFH = 6.6 Hz, CF3). IR (KBr): 3115, 1778, 1333, 1160, 1007, 854, 648 cm−1. HRMS (EI-TOF): calcd for C12H5F9O2 (M+) 352.0146, found 351.0082.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-2-naphthoate (3p). White solid, 313 mg, 94%. 1H NMR (500 MHz, CDCl3) δ 8.70 (s, 1H), 8.06–7.90 (m, 4H), 7.67–7.57 (m, 2H), 6.39 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 162.4, 143.3 (qq, 2JCF = 38 Hz, 3JCF = 5 Hz), 136.0, 133.1, 132.4, 129.7, 129.4, 128.8, 127.9, 127.2, 125.2, 123.8, 120.8 (q, 1JCF = 269.6 Hz), 118.7 (q, 1JCF = 274.1 Hz), 113.7 (qq, 2JCF = 36.6 Hz, 3JCF = 3.5 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.8 (s, CF3), −61.0 (d, JFH = 6.1 Hz, CF3). IR (KBr): 3069, 1765, 1306, 1160, 1060, 767, 648 cm−1. HRMS (EI-TOF): calcd for C15H8F6O2 (M+) 334.0428, found 334.0422.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-picolinate (3q). Yellow oil, 154 mg, 54%. 1H NMR (500 MHz, CDCl3) δ 8.85 (m, 1H), 8.22 (m, 1H), 7.94 (m, 1H), 7.61 (m, 1H), 6.40 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 160.9, 150.5, 144.9, 143.1 (qq, 2JCF = 38.3 Hz, 3JCF = 4.9 Hz), 137.4, 128.3, 126.5, 120.6 (q, 1JCF = 269.6 Hz), 118.5 (q, 1JCF = 274 Hz), 113.8 (qq, 2JCF = 36.8 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.8 (s, CF3), −61.2 (d, JFH = 7.1 Hz, CF3). IR (KBr): 3062, 1772, 1306, 1160, 1073, 748, 655 cm−1. HRMS (EI-TOF): calcd for C10H5F6NO2 (M+) 285.0224, found 285.0215.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-furan-2-carboxylate (3r). Yellow oil, 260 mg, 95%. 1H NMR (500 MHz, CDCl3) δ 7.72 (m, 1H), 7.42 (m, 1H), 6.62 (m, 1H), 6.35 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 153.3, 148.7, 143.1 (qq, 2JCF = 38.3 Hz, 3JCF = 4.9 Hz), 141.4, 121.9, 120.6 (q, 1JCF = 269.6 Hz), 118.5 (q, 1JCF = 273.9 Hz), 114.0 (qq, 2JCF = 36.9 Hz, 3JCF = 3.6 Hz), 112.6. 19F NMR (470.0 MHz, CDCl3) δ −72.1 (s, CF3), −61.2 (d, JFH = 6.6 Hz, CF3). IR (KBr): 3115, 1778, 1473, 1300, 1160, 767, 648 cm−1. HRMS (EI-TOF): calcd for C9H4F6O3 (M+) 274.0065, found 274.0061.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-thiophene-2-carboxylate (3s). Yellow oil, 264 mg, 91%. 1H NMR (500 MHz, CDCl3) δ 7.98 (m, 1H), 7.76 (m, 1H), 7.20 (m, 1H), 6.34 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 157.3, 142.6 (qq, 2JCF = 38.1 Hz, 3JCF = 5 Hz), 136.5, 135.6, 129.3, 128.4, 120.6 (q, 1JCF = 269.5 Hz), 118.6 (q, 1JCF = 274 Hz), 113.9 (qq, 2JCF = 36.8 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −61.1 (d, JFH = 5.6 Hz, CF3). IR (KBr): 3115, 1765, 1306, 1160, 1060, 734, 655 cm−1. HRMS (EI-TOF): calcd for C9H4F6O2S (M+) 289.9836, found 289.9832.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-2-(((Z)-1,1,1,4,4,4-hexafluorobut-2-en-2-yl)thio)benzoate (3t). Yellow oil, 306 mg, 64%. 1H NMR (500 MHz, CDCl3) δ 8.10 (m, 1H), 7.58 (m, 1H), 7.41 (m, 1H), 7.35 (m, 1H), 7.00 (q, 1H, JHF = 7 Hz), 6.38 (q, 1H, JHF = 7 Hz). 13C NMR (125 MHz, CDCl3) δ 161.0, 142.7 (qq, 2JCF = 38.4 Hz, 3JCF = 5 Hz), 136.8, 136.2 (qq, 2JCF = 34.1 Hz, 3JCF = 4.9 Hz), 134.3, 133.0 (qq, 2JCF = 36.3 Hz, 3JCF = 4.6 Hz), 132.2, 130.5, 127.4, 125.8, 121.4 (q, 1JCF = 275.3 Hz), 121.0 (q, 1JCF = 271 Hz), 120.6 (q, 1JCF = 269.6 Hz), 118.5 (q, 1JCF = 273.9 Hz), 114.1 (qq, 2JCF = 36.9 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −65.5 (s, CF3), −61.2 (d, JFH = 5.6 Hz, CF3), −59.5 (d, JFH = 7.1 Hz, CF3). IR (KBr): 3075, 1765, 1260. 1153, 1000, 748, 648 cm−1. HRMS (EI-TOF): calcd for C15H6F12O2S (M+) 477.9897, found 477.9901.
(Z)-1,1,1,4,4,4-Hexafluorobut-2-en-2-yl-4-(((Z)-1,1,1,4,4,4-hexafluorobut-2-en-2-yl)oxy)benzoate (3u). White solid, 342 mg, 74%. 1H NMR (500 MHz, CDCl3) δ 8.13 (d, 2H, JHH = 9 Hz), 7.14 (d, 2H, JHH = 9 Hz), 6.34 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 161.2, 160.5, 146.0 (qq, 2JCF = 36.5 Hz, 3JCF = 5 Hz), 136.8, 143.0 (qq, 2JCF = 33.1 Hz, 3JCF = 5.1 Hz), 133.1, 122.8, 120.7 (q, 1JCF = 269.9 Hz), 120.6 (q, 1JCF = 269.5 Hz), 118.8 (q, 1JCF = 276.3 Hz), 118.6 (q, 1JCF = 274 Hz), 116.3, 113.8 (qq, 2JCF = 36.7 Hz, 3JCF = 3.6 Hz), 113.1 (qq, 2JCF = 37.1 Hz, 3JCF = 3.6 Hz). 19F NMR (470.0 MHz, CDCl3) δ −71.9 (s, CF3), −69.9 (s, CF3), −61.1 (d, JFH = 6.1 Hz, CF3), −59.9 (d, JFH = 7.1 Hz, CF3). IR (KBr): 3122, 1605, 1266, 1153, 854, 648 cm−1. HRMS (EI-TOF): calcd for C15H6F12O3 (M+) 462.0125, found 462.0119.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

The authors gratefully acknowledge the financial support of Key Research & Development Plan of Shaanxi province (2019ZDLGY06-01, 2021ZDLGY13-07, 2020GY-075) and Xi’an Science & Technology Plan Project (GXYD 12.1).

Notes and references

  1. (a) H. Ito and M. Ueda, Macromolecules, 1990, 23, 2885–2894 CrossRef CAS; (b) S. N. Salazkin and G. S. Chelidze, Polym. Sci., Ser. C, 2009, 51, 126–132 CrossRef; (c) A. T. Zdvizhkov, R. A. Novikov, A. S. Peregudo, M. I. Buzin, G. G. Nikiforova, A. A. Korlyukov, V. S. Papkov and S. N. Salazkin, Russ. Chem. Bull., 2014, 63, 2509–2514 CrossRef CAS; (d) A. E. Neitzel, L. Barreda, J. T. Trotta, G. W. Fahnhorst, T. J. Haversang, T. R. Hoye, B. P. Fors and M. A. Hillmyer, Polym. Chem., 2019, 10, 4573–4583 RSC; (e) C. P. Easterling, G. Coste, J. E. Sanchez, G. E. Fanucci and B. S. Sumerlin, Polym. Chem., 2020, 11, 2955–2958 RSC.
  2. (a) T. M. Konrad, P. Schmitz, W. Leitner and G. Franciò, Chem.–Eur. J., 2013, 19, 13299–13303 CrossRef CAS PubMed; (b) P. J. González-Liste, F. León, I. Arribas, M. Rubio, S. E. García-Garrido, V. Cadierno and A. Pizzano, ACS Catal., 2016, 6, 3056–3060 CrossRef; (c) F. León, P. J. González-Liste, S. E. García-Garrido, I. Arribas, M. Rubio, V. Cadierno and A. Pizzano, J. Org. Chem., 2017, 82, 5852–5867 CrossRef PubMed; (d) C. Liu, J. Yuan, J. Zhang, Z. Wang, Z. Zhang and W. Zhang, Org. Lett., 2018, 20, 108–111 CrossRef CAS PubMed; (e) J. Jia, D. Y. Fan, J. Zhang, Z. F. Zhang and W. B. Zhang, Adv. Synth. Catal., 2018, 360, 3793–3800 CrossRef CAS; (f) X. X. Wang, L. Yu, X. Lu, Z. L. Zhang, D. G. Liu, C. L. Tian and Y. Fu, CCS Chem., 2021, 3, 727–737 CrossRef.
  3. (a) H. Urabe, D. Suzuki, M. Sasaki and F. Sato, J. Am. Chem. Soc., 2003, 125, 4036–4037 CrossRef CAS PubMed; (b) X. Z. Shu, D. Shu, C. M. Schienebeck and W. Tang, Chem. Soc. Rev., 2012, 41, 7698–7711 RSC; (c) R. C. Conyers and B. W. Gung, Chem.–Eur. J., 2013, 19, 654–664 CrossRef CAS PubMed; (d) M. Kitamura, K. Araki, H. Matsuzaki and T. Okauchi, Eur. J. Org. Chem., 2013, 2013, 5045–5049 CrossRef CAS; (e) M. Kumar, S. Bagchi and A. Sharma, RSC Adv., 2015, 5, 53592–53603 RSC; (f) T. Shoji, S. Sugiyama, Y. Kobayashi, A. Yamazaki, Y. Ariga, R. Katoh, H. Wakui, M. Yasunami and S. Ito, Chem. Commun., 2020, 56, 1485–1488 RSC.
  4. (a) B. J. Li, D. G. Yu, C. L. Sun and Z. J. Shi, Chem.–Eur. J., 2011, 17, 1728–1759 CrossRef CAS PubMed; (b) T. Mesganaw and N. K. Garg, Org. Process Res. Dev., 2012, 16, 29–39 Search PubMed; (c) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A. M. Resmerita, N. K. Garg and V. Percec, Chem. Rev., 2010, 110, 1346–1416 Search PubMed.
  5. (a) C. Bruneau and P. H. Dixneuf, Angew. Chem., Int. Ed., 2006, 45, 2176–2203 CrossRef CAS PubMed; (b) M. Nishiumi, H. Miura, K. Wada, S. Hosokawa and M. Inoue, Adv. Synth. Catal., 2010, 352, 3045–3052 CrossRef CAS; (c) M. C. Fu, R. Shang, W. M. Cheng and Y. Fu, ACS Catal., 2016, 6, 2501–2505 CrossRef CAS; (d) J. Francos and V. Cadierno, Catalysts, 2017, 7, 328–350 CrossRef; (e) B. Maity and D. Koley, ChemCatChem, 2018, 10, 566–580 CrossRef CAS; (f) X. Xu, H. Feng, L. Huang and X. Liu, J. Org. Chem., 2018, 15, 7962–7969 CrossRef PubMed; (g) W. F. Xiong, F. X. Shi, R. X. Cheng, B. Y. Zhu, L. Wang, P. Q. Chen, H. M. Lou, W. Q. Wu, C. R. Qi, M. Lei and H. F. Jiang, ACS Catal., 2020, 10, 7968–7978 CrossRef CAS; (h) C. Kumari and A. Goswami, Eur. J. Org. Chem., 2021, 2021, 429–435 CrossRef CAS.
  6. (a) X. Q. Jia, X. M. Zhou, H. D. Quan, M. Tamura and A. Sekiya, J. Fluorine Chem., 2011, 132, 1188–1193 CrossRef CAS; (b) C. Zhang, X. Q. Jia and H. D. Quan, J. Fluorine Chem., 2016, 191, 77–83 CrossRef CAS.
  7. (a) B. Zhao, J. J. Zeng, S. Han, D. H. Tu, J. W. Li, W. Zhang and J. Lu, Tetrahedron Lett., 2020, 61, 151693–151700 CrossRef; (b) B. Zhao, Y. Li, D. H. Tu, W. Zhang, Z. T. Liu and J. Lu, Tetrahedron Lett., 2016, 57, 4345–4347 CrossRef CAS; (c) K. Dai, K. Wang, Y. Li, J. G. Chen, Z. W. Liu, J. Lu and Z. T. Liu, J. Org. Chem., 2017, 82, 4721–4728 CrossRef CAS PubMed.
  8. (a) E. L. Stogryn and S. J. Brois, J. Am. Chem. Soc., 1967, 89, 605–609 CrossRef CAS; (b) R. D. Chambers, C. G. P. Jones, M. J. Silvester and D. B. Speight, J. Fluorine Chem., 1984, 25, 47–56 CrossRef CAS; (c) Y. L. Yagupolskii, N. V. Pavlenko, I. I. Gerus, S. Peng and M. Nappa, ChemistrySelect, 2019, 4, 4604–4610 CrossRef CAS; (d) M. M. Kremlev, O. I. Mushta, Y. L. Yagupolskii, J. A. Rusanova, S. Peng and V. Petrov, J. Fluorine Chem., 2020, 232, 109450 CrossRef CAS.
  9. (a) L. J. Goossen, J. Paetzold and D. Koley, Chem. Commun., 2003, 706–707 RSC; (b) J. Tripathy and M. Bhattacharjee, Tetrahedron Lett., 2009, 50, 4863–4865 CrossRef CAS; (c) M. Kawatsura, J. Namioka, K. Kajita, M. Yamamoto, H. Tsuji and T. Itoh, Org. Lett., 2011, 13, 3285–3287 CrossRef CAS PubMed; (d) T. Krause, S. Baader, B. Erb and L. J. Gooßen, Nat. Commun., 2016, 7, 11732–11738 CrossRef PubMed; (e) S. L. Zhang, C. Xiao, H. X. Wan and X. M. Zhang, Chem. Commun., 2019, 55, 4099–4102 RSC; (f) G. Y. Liu, X. X. Zhang, G. H. Kuang, N. H. Lu, Y. Fu, Y. Y. Peng, Q. Xiao and Y. R. Zhou, ACS Omega, 2020, 5, 4158–4166 CrossRef CAS PubMed.
  10. (a) A. L. Henne, J. V. Schmitz and W. G. Finnegan, J. Am. Chem. Soc., 1950, 72, 4195 CrossRef CAS; (b) È. Casals-Cruañas, O. F. González-Belman, P. Besalú-Sala, D. J. Nelson and A. Poater, Org. Biomol. Chem., 2017, 15, 6416–6425 RSC.
  11. (a) T. Taga, N. Yamamoto and K. Osaki, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, 41, 153–154 CrossRef; (b) U. Sidelmann, S. H. Hansen, C. Gavaghan, A. W. Nicholls, H. A. J. Carless, J. C. Lindon, I. D. Wilson and J. K. Nicholson, J. Chromatogr. B: Biomed. Sci. Appl., 1996, 685, 113–122 CrossRef CAS.
  12. (a) L. X. Liu, K. Sun, L. B. Su, J. Y. Dong, L. Cheng, X. D. Zhu, C. o. Au, Y. B. Zhou and S. F. Yin, Org. Lett., 2018, 20, 4023–4027 CrossRef CAS PubMed; (b) Z. Zhang, Y. Z. Luo, H. G. Du, J. X. Xu and P. F. Li, Chem. Sci., 2019, 10, 5156–5161 RSC; (c) A. Mandal, S. Dana, D. Chowdhury and M. Baidya, Chem.–Asian J., 2019, 14, 4074–4086 CrossRef CAS PubMed; (d) M. Y. Ansari, N. Kumar and A. Kumar, Org. Lett., 2019, 21, 3931–3936 CrossRef CAS PubMed; (e) W. F. Liu and W. Q. Kong, Org. Chem. Front., 2020, 7, 3941–3955 RSC.
  13. (a) R. C. Samanta, B. Maji, S. D. Sarkar, K. Bergander, R. Frohlich, C. M. Lichtenfeld, H. Mayr and A. Studer, Angew. Chem., Int. Ed., 2012, 51, 1–6 CrossRef; (b) M. Li, H. Yuan, B. Zhao, F. Liang and J. Zhang, Chem. Commun., 2014, 50, 2360–2363 RSC; (c) L. F. Chen, K. Chen and S. F. Zhu, Chem, 2018, 4, 1208–1262 CrossRef CAS; (d) W. Z. Song, M. Li, J. N. He, J. H. Li, K. Dong and Y. B. Zheng, Org. Biomol. Chem., 2019, 17, 2663–2669 RSC; (e) N. l. Luo, S. Wang, Y. Zhang, J. h. Xin and C. d. Wang, J. Org. Chem., 2020, 85, 14219–14228 CrossRef CAS PubMed.
  14. R. N. Haszeldine, J. Chem. Soc., 1952, 2504–2513 RSC.

Footnote

Electronic supplementary information (ESI) available: Experimental procedures, characterization data, 1H, 13C, 19F NMR, IR and HRMS spectra. See DOI: 10.1039/d1ra06526b

This journal is © The Royal Society of Chemistry 2021
Click here to see how this site uses Cookies. View our privacy policy here.