Issue 3, 2021

Resveratrol attenuates dapagliflozin-induced renal gluconeogenesis via activating the PI3K/Akt pathway and suppressing the FoxO1 pathway in type 2 diabetes

Abstract

Dapagliflozin alleviates hyperglycemia by increasing glycosuria, but it induces renal gluconeogenesis, thus neutralizing its efficacy. Resveratrol (Rsv), a natural polyphenolic chemical, improves insulin sensitivity in type 2 diabetes (T2D). Here, we investigated the regulatory effects and underlying mechanisms of Rsv on dapagliflozin-induced renal gluconeogenesis. Male ob/ob mice were given the vehicle (HF), dapagliflozin (1 mg kg−1), Rsv (10 mg kg−1), or dapagliflozin and Rsv combination for 10 weeks. Glucose metabolism was evaluated by glucose and pyruvate tolerance tests. HK-2 cells (human renal proximal tubule cells) were treated with dapagliflozin (1 μmol L−1) for 2 h and further incubated with Rsv (10 μmol L−1) for 12 h. The effects of Rsv on gluconeogenesis and insulin signaling were assessed. Dapagliflozin treatment increased glucose production in HK-2 cells and lowered blood glucose and induced gluconeogenesis in ob/ob mice. After Rsv treatment, the enhanced glucose production and gluconeogenesis were alleviated. The upregulated mRNA and protein expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and the activation of the forkhead transcription factor O1 (FoxO1) protein in the dapagliflozin group were attenuated by Rsv administration. Rsv also improved renal insulin signaling by increasing PI3K and Akt phosphorylation. The PI3K inhibitor LY294002 dramatically decreased the p-Akt expression and activated FoxO1 by dephosphorylation, thus diminishing the inhibitory effects of Rsv on dapagliflozin-induced PEPCK and G6Pase expression. The data showed the mechanisms of Rsv in attenuating dapagliflozin-induced renal gluconeogenesis via activating the PI3K/Akt pathway and further suppressing FoxO1 activation, suggesting a potential intervention to achieve better glucose-lowering effects for SGLT2 inhibitors in T2D therapy.

Graphical abstract: Resveratrol attenuates dapagliflozin-induced renal gluconeogenesis via activating the PI3K/Akt pathway and suppressing the FoxO1 pathway in type 2 diabetes

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2020
Accepted
15 Dec 2020
First published
18 Dec 2020

Food Funct., 2021,12, 1207-1218

Resveratrol attenuates dapagliflozin-induced renal gluconeogenesis via activating the PI3K/Akt pathway and suppressing the FoxO1 pathway in type 2 diabetes

X. Sun, Z. Cao, Y. Ma, Y. Shao, J. Zhang, G. Yuan and X. Guo, Food Funct., 2021, 12, 1207 DOI: 10.1039/D0FO02387F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements