Jonathan C.
Bristow
,
Stacey V. A.
Cliff
,
Songjie
Yang
and
John D.
Wallis
*
School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK. E-mail: john.wallis@ntu.ac.uk
First published on 27th May 2021
Peri–peri interactions in naphthalene systems control the degree of bond formation between a peri-dimethylamino group and a polarised alkene or aldehyde group. Two peri-phenyl groups, which repel, induce closer N⋯C interactions or bond formation, while the ethylene link in the corresponding acenaphthene system has the opposite effect, and for the more electron-deficient alkenes lead to formation of a fused azepine ring initiated by the tert-amino effect. In related 1,8-fluorene derivatives N⋯C interactions occur for an aldehyde and a moderately polarised alkene, but fused azocines are formed when the alkene is more reactive.
Recently we demonstrated that for peri-naphthalenes containing a Me2N- group adjacent to a –CHC(CN)2 group, the Me2N⋯C
C separations can be controlled by substituents at the opposite pair of peri-positions, e.g. an ethylene bridge as in acenaphthene 13 opens up the separation between the two groups, while two peri-phenyl groups, which repel each other, reduces the separation in 14.14 Furthermore, we observed a temperature variable separation between the groups in the salt 15. Remarkably the Me2N⋯C separation at 200 K is 2.098(4) Å but reversibly contracts to 1.749(3) Å at 100 K. From all these data we were able to propose a preliminary reaction coordinate for the reaction between the groups. Here we now report the structures of two families of peri-naphthalenes with a dimethylamino group next to different electrophilic groups with either an ethylene bridge or two phenyl groups at the opposite peri-positions. Furthermore, we report the structures of a small family of 9,9-dimethylfluorenes with dimethylamino and electrophilic groups adjacent, which are designed as modified biphenyl systems in which the phenyl rings are constrained to be close to coplanar but pulled away from each other by the single carbon link between the two rings. A peri-disubstituted acenaphthene system has been used to investigate nucleophilic attack at silicon15 and to prepare frustrated lone pair systems.16
![]() | ||
Scheme 1 (a) n-BuLi/hexane/80 °C/72 h; DMF/THF/−78 °C; (b)–(d) malonitrile, methyl cyanoacetate or cyclohexane-1,3-dione/ethylenediammonium diacetate cat./methanol/reflux. |
Comparison of the structures of the dimethylamino derivative 16 and the peri-dimethylamino-aldehyde 17 show how the nitrogen lone pair which is partially conjugated with the naphthalene ring in 16 has oriented towards the aldehyde carbon in 17 (Fig. 1). Thus, the torsion angles of the N–CH3 bonds with the aromatic ring in aldehyde 17 are much less asymmetric: 51.6(3)/−78.0(3) cf. 23.9(2)/−105.1(2)° in 16, as the lone pair is rotated further away from alignment with the p orbitals of the aromatic ring (Table 1). The two phenyl rings in aldehyde 17 are tilted at 56.7 and 59.2° in the same sense from the best naphthalene plane, and lie at 20.7° to each other (ESI:† Table S2). The phenyl groups are splayed apart in the naphthalene plane, with displacements of 4–4.5° from their symmetrical positions at their peri-attachment positions, and a contact of 3.012 Å between their ipso carbon atoms. The nearby exo angle ψ between the fused rings in the naphthalene core is expanded to 126.1(2)°. The latter leads to the corresponding exo angle ϕ at the naphthalene between the Me2N and CHO groups being contracted to 117.5(2)° to produce a closer Me2N⋯CHO separation of 2.309(3) Å. This is 0.18 Å shorter than in the case of 44 without the two phenyl groups (2.489(6) Å). In other respects the molecular geometries of 17 and 4 are very similar (Table 1), for example the Me2N⋯CO angles are 112.56(17) and 113.5(3)° respectively. It is of note that the difference between the exo angles ϕ and ψ in the peri-amino-aldehyde 17 is larger than in the amine 16 which lacks an electrophilic peri-neighbour (8.6 v 5.4°) suggesting that the attractive Me2N/CHO interaction contributes to this asymmetry in the exo angles.
a/Å | b/Å | θ/° | ζ & ξ/°a | τ/°a | ΔN, C/Åb | |
---|---|---|---|---|---|---|
16 | — | — | — | 23.9(2)/−105.1(2) | — | 0.0646(19), — |
17 | 2.309(3) | 1.216(3) | 112.56(17) | 51.6(3)/−78.0(3) | 58.9(3) | 0.0610(19), −0.204(3) |
18 | 2.3603(19) | 1.356(2) | 114.21(11) | 36.9(2)/−94.95(18) | 51.0(2) | 0.2526(19), −0.4976(19) |
4 4 | 2.489(6) | 1.213(6) | 113.5(3) | 44.5(5)/−85.2(5) | 57.3(5) | 0.220(3), −0.234(4) |
8 8 | 2.413(2) | 1.354(2) | 112.51(12) | 49.7(2)/−81.5(2) | 56.5(2) | 0.166(2), −0.270(2) |
α/° | β/° | δ/° | ε/° | ϕ/ψ/° | ||
---|---|---|---|---|---|---|
a ζ, ξ and τ: torsion angles. b ΔN, C: deviations of peri substituent atoms from the naphthalene's best plane. c Parent = 1,8-diphenylnaphthalene.18 | ||||||
Parentc | — | — | — | — | 119.9(2)/126.2(2) | |
16 | 123.19(14) | 117.65(14) | — | — | 119.42(15)/124.78(14) | |
17 | 124.8(2) | 114.8(2) | 121.7(2) | 118.1(2) | 117.5(2)/126.1(2) | |
18 | 124.56(13) | 115.34(12) | 119.56(12) | 119.83(12) | 117.74(12)/126.24(13) | |
4 4 | 124.3(4) | 116.0(3) | 122.2(4) | 118.5(4) | 120.6(3)/121.5(4) | |
8 8 | 124.30(16) | 115.92(14) | 120.15(14) | 120.27(14) | 120.42(13)/122.65(15) |
We have already reported that a similar effect is shown in a crystal of the toluene solvate of the dinitrile 18, where the installation of the two phenyl groups led to the reduction in the Me2N⋯CHC(CN)2 by 0.054 Å to 2.3603(19) Å14 compared to the corresponding molecule 88 without the phenyl substituents (Table 1). The phenyl groups take similar orientations to those in 16 and 17, and the exo angles, ϕ and ψ, change to 117.74(12) and 126.24(13)° (Fig. 2). The larger separation between the two functional groups in dinitrile 18, compared to the aldehyde 17 (2.359 cf. 2.309 Å) is mainly attributable to the larger displacements of the functional groups out of the naphthalene plane in opposite directions. It is important to note that the exact molecular structure is dependent on both the attraction between the groups and optimisation of crystal packing, thus for the peri-diphenyl series the Me2N⋯C is shorter for the aldehyde than for the dinitrile (2.309 v 2.359 Å), but it is the other way round for the series without the phenyl groups (2.489 v 2.413 Å), though the differences are quite small.
![]() | ||
Fig. 2 Molecular structures of the peri-diphenyl naphthalene derivatives 18 (left), 19 (middle) and 21 (right). |
Replacement of one of the nitriles in 18 with a methyl ester group has surprising consequences. Although, this compound has a similar open structure 20 in CDCl3 solution according to NMR, in the crystal structure it adopts a closed zwitterionic structure 19 where the dimethylamino group has added to the alkene (Fig. 2), promoted by the presence of the diphenyl groups. In contrast, the analogue without the two phenyl groups, cyanoester 23, adopts an open structure in the crystalline state with a Me2N⋯CHC(CN)CO2Me separation of 2.595(2) Å, an even larger value than in the corresponding dinitrile 8 (Table 2).8 The difference in exo angles for the closed structure is, of course, considerably larger than for the aldehyde 17 and dinitrile 18: 17.6° v 8.6–8.9°. The formation of the five-membered ring reduces angle ϕ more and opens angle ψ further, illustrating the interdependence of these two angles. The disposition of the phenyl groups is similar to other diphenyl derivatives (Table S2†).
a/Å | b/Å | θ/° | N–CH3/Å | φ/ψ/° | |
---|---|---|---|---|---|
19 | 1.6719(14) | 1.4543(14) | 115.94(9) | 1.4899(16)/1.4932(15) | 112.28(9)/129.88(9) |
21 | 1.620(4) | 1.484(4) | 116.0(3) | 1.503(4)/1.496(4) | 111.6(3)/130.0(3) |
23 14 | 2.595(2) | 1.3485(18) | 116.23(10) | 1.4586(18)/1.4639(17) | 121.39(13)/122.56(12) |
25 10 | 1.6310(19) | 1.4863(19) | 113.99(10) | 1.4995(17)/1.5020(18) | 113.16(12)/128.31(14) |
α/° | β/° | δ/° | ε/° | ||
---|---|---|---|---|---|
19 | 127.80(9) | 109.84(9) | 110.75(9) | 129.78(9) | |
21 | 126.7(3) | 110.7(3) | 110.3(3) | 130.5(3) | |
23 | 123.15(13) | 116.82(11) | 122.53(12) | 117.89(12) | |
25 | 128.64(12) | 109.27(13) | 109.46(12) | 131.62(14) |
The Me2N–C bond formed between peri-substituents in 19 is 1.6719(14) Å long and the former alkene bond is now 1.4543(14) Å. In the two independent molecules of the biphenyl derivative 1213 where a dimethylamino group has added to an alkenedinitrile to form a less strained six-membered ring, the Me2N–C bonds (1.586(3) and 1.604(3) Å) are more than 0.07 Å shorter than in 19, and the broken alkene bonds (1.493(3) and 1.487(3) Å) are 0.04 Å longer than in 19. Thus, in the naphthalene 19 the Me2N–C bond can be considered as not fully formed, and the alkene bond as not fully broken. An earlier stage in the Michael reaction between the two groups is illustrated in the chloride salt of naphthalene 24 which has one peri-dimethylammonium group in place of the phenyl groups. In this case the Me2N–C bond is even longer (1.754(6) Å) than in 19, and the former alkene slightly shorter (1.442(5) Å).14
The accumulation of positive charge on the dimethylamino group in 19 leads to longer N–CH3 bonds (1.4899(16) and 1.4932(15) Å cf. 1.4586(18) and 1.4639(17) in 23 without phenyl groups, and the development of negative charge on the carbon atom between the nitrile and ester groups causes the bonds from the carbanionic centre to these groups to be shortened (C–CN, C–C(O): 1.4100(15) and 1.4289(14) Å cf. 1.4420(18) and 1.4851(19) Å in 23). Furthermore, the lengths of both bonds from the naphthalene ring to the peri-groups are increased on the formation of the bond between them: (C(nap)–N, C(nap)–C: 1.4720(12), 1.5058(14) Å cf. 1.4259(17) and 1.4772(19) Å in 23).
Study of a crystal of the chloroform solvate of 21, the Knoevenagel product formed from the diphenyl aldehyde 17 with cyclohexan-1,3-dione, showed that it also adopts a closed structure, as does its analogue without peri-phenyl groups 25.10 The Me2N–C bond (1.620(4) Å) is 0.05 Å shorter than in the corresponding cyanoester 19 and the bond to the carbanion centre (1.484(4) Å) is 0.03 Å longer due to the stronger carbanion stabilising ability of two ketone groups compared to an ester and a nitrile group. The presence of the two phenyls has made little difference to the Me2N–C bond compared to that the analogue 25 without phenyl groups. The expected small increase and decrease in the exo angles ψ and ϕ respectively, are compensated by changes in the angles at the peri-substituents (α, β, δ and ε). It is of note that for the diphenylnaphthalene derivatives whose crystals do not include solvent, 16, 17, and 19, there is common packing motif, in which two molecules lie such that the two phenyl groups of one lie over the naphthalene of the other and vice-versa (Fig. S1, ESI†).
Addition of acid to the aldehyde 17 leads to protonation of the carbonyl group and formation of a N–C bond between the peri-groups. Thus, addition of HCl gave the chloride salt 26 as a DCM solvate, while an attempted Knoevenagel reaction with Meldrum's acid gave the analogous salt with a monomalonate anion 27 (Scheme 2). The crystal structures of both salts were determined (Fig. 3, Table 3). The phenyl groups have enhanced the difference in the exo angles ψ and φ between the peri-positions from 14.4° in naphthalene salt 55 which has no peri-phenyl groups, to 18.2–18.4° in cations 26 and 27. This leads to shorter Me2N–C(OH) bonds, 1.617(5) and 1.621(2) Å, compared to 5 (1.638(2) Å) without the phenyl groups, and correspondingly the C–OH bonds are slightly longer: 1.360(4) and 1.363(2) v 1.353(2) Å. The anion in each salts form a hydrogen bond to the cation's hydroxyl group (Fig. 3). All these structures with two peri-phenyl groups show evidence of the effect of the repulsion between the two phenyl groups on shortening the interaction or bond between the two opposite peri-groups, and in the case of 19 forcing the formation of the bond in the solid state.
![]() | ||
Fig. 3 Salts formed from aldehyde 17 by O-protonation: a chloride salt 26 as a DCM solvate (left) and a monomalonate salt 27 (right). |
a/Å | b/Å | N–CH3/Å | θ/° | φ/ψ/° | |
---|---|---|---|---|---|
26 | 1.617(5) | 1.360(4) | 1.491(5)/1.499(5) | 111.3(3) | 112.1(3)/130.3(4) |
27 | 1.621(2) | 1.363(2) | 1.487(3)/1.499(2) | 110.92(15) | 112.03(17)/130.42(17) |
5 5 | 1.638(2) | 1.353(2) | 1.497(2)/1.498(2) | 111.64(12) | 113.92(15)/128.32(15) |
α/° | β/° | δ/° | ε/° | ϕ/ψ/° | |
---|---|---|---|---|---|
a ζ, ξ and τ: torsion angles. | |||||
28 | 121.74(13) | 119.27(13) | 124.14(13) | 116.08(13) | 129.50(14)/111.38(13) |
29 | 121.81(18) | 119.57(17) | 121.32(18) | 119.88(18) | 128.54(17)/111.25(18) |
122.77(18) | 118.23(16) | 121.87(12) | 119.47(17) | 127.30(18)/111.73(17) | |
30 | 121.76(13) | 119.53(12) | 121.36(12) | 119.72(12) | 128.62(13)/111.47(13) |
Attempted reaction of aldehyde 17 with nitromethane in the presence of ethylenediammonium diacetate led to a small amount of the crystalline bis-imine 22, formed by reaction between two equivalents of the aldehyde 17 and one of the catalyst, whose structure was determined by X-ray crystallography (Fig. 4). The structure is particularly informative with respect to the influence of the peri-phenyl groups. The imine and Me2N- groups are not well oriented for mutual interaction, both preferring to conjugate with the naphthalene ring. The two imine bonds make torsions of 36.4(3) and 42.0(3)° to their nearest aromatic C,C(H) bonds, and for both of the pyramidal –NMe2 groups one N-methyl bond make a torsion angle of just 23.1(3) and 26.0(3)° to the nearest aromatic C,C(H) bond.
![]() | ||
Fig. 4 Face-on view of bis-imine 22 (top) and a view through one naphthalene ring's plane showing the strong displacement of all pairs of peri-substituents out of their naphthalene planes (bottom). |
The Me2N⋯C separations are quite long (2.667(3) and 2.711(3) Å) and their angles of interaction (Me2)N⋯CN are not favourable (125.84(15) and 129.12(15)°). In contrast to the other structures discussed above, the phenyl groups have a much lower distorting effect on the two exo angles at either side of each naphthalenes. Thus, instead of a difference of 8.5/8.6° between exo angles ψ and φ seen in 17 and 18, this is reduced to 1.8 and 2.6° in the two naphthalenes of the bis-imine. However, the naphthalene rings are strongly twisted, with angles of 9.9 and 11.5° between their benzene rings' best planes, so that all four sets of peri-substituent atoms are strongly displaced out of their best naphthalene planes, to opposite sides, by 0.271(2)–0.605(2) Å. The relative dispositions of the phenyl groups relative to the naphthalene plane and at the peri-positions, however, remain similar to those in the other diphenyl derivatives (Table S1†). In the case of bis-imine 22 the phenyl groups do not exert their normal effect because the Me2N/C
NR interactions are not attractive enough, or possibly repulsive, at ca. 2.5 Å.19 In this case, faced with two unfavourable peri interactions, the naphthalene rings distort strongly out of the aromatic plane, rather than within it, and so move the peri-substituents apart. Thus, there are limits to the compressive influence of the two peri-phenyl groups on an opposite set of peri-substituents.
![]() | ||
Scheme 3 (a) and (b): Malonitrile or methyl cyanoacetate/ethylenediammonium diacetate cat./methanol/reflux; (c)–(e) Meldrum's acid, cyclohexane-1,3-dione or cyclopentane-1,3-dione, DMSO, RT. |
The structure of the aldehyde 28 shows a very significant difference to that of the corresponding naphthalene derivative 4 without the ethylene bridge (Fig. 5, Table 4). The two groups are splayed apart to a Me2N⋯C separation of 2.953(2) Å, cf. 2.489(6) Å in 4, due mainly to a widening of the ϕ exo angle to 129.50(14)°, and the aldehyde group has rotated so that it now it lies at just 16.4° to the nearest C,C(H) bond of the aromatic system. Thus, it is not involved in a n–π* interaction of type: Me2N⋯CO as it is in 4. The nitrogen atom lies at 2.37 Å from the aldehyde hydrogen atom, and its theoretical lone pair axis lies at 27° to the N⋯H vector. Both the aldehyde and dimethylamino groups are oriented to optimise their conjugation with the acenaphthene ring, though the bond lengths between these groups and the ring are not significantly shortened compared to 4: Me2N–C: 1.4221(19) v 1.420(6) Å, and (O
)C–C: 1.480(2) v 1.490(6) Å for 28 and 4 respectively. The dimethylamino group is displaced slightly towards the aldehyde, and the aldehyde is displaced more strongly away, but it is the larger exo angle which is the main cause of their increased separation.
![]() | ||
Fig. 5 Two views of the acenaphthene aldehyde 28 (left and middle), showing how the aldehyde group lies close to the aromatic plane and the pyramidal dimethylamino group is oriented to conjugate with the aromatic ring, in contrast to the corresponding naphthalene without an ethylene bridge 4 (right).4 |
The structures of the Knoevenagel products 29 and 30 have a similar pattern of in-plane displacements as in the aldehyde 28 due to the widening of the ϕ exo angle to 127.03(18)–128.62(13)/Å, but the alkenes lie at greater angles (35.9(3)–51.9(3)°) to their acenaphthene rings (Fig. 6, Table 4). The Me2N⋯C separations lie in the range 2.755(3)–2.846(3) Å with the shortest for one of two crystallographically independent molecule of dinitrile 29 which has the largest rotation of the alkene group away from the acenaphthene. In this case the Me2N⋯CC angle is reduced to 122.68(14)° (cf. 129.28(11) and 133.00(15)° in the other cases), and this can be considered as a rather long n–π* interaction.
![]() | ||
Fig. 6 Molecular structures of one of the two molecules of dinitrile 29, with the larger rotation of the dinitrile side chain, (left) and of cyanoester 30 (right). |
It is known that for a naphthalene with a peri-dimethylamino group located next to an electron deficient alkene, on heating in DMSO at 60° C the groups react to form a fused azepine, for example from the dinitrile 8 or the N,N-dimethylbarbiturate derivative 38 to the fused azepines 37 and 39 (Scheme 4).22,23 Furthermore, recent related work has reported how 2-naphthol reacts with the peri-pyrrolidinyl aldehyde 40 to give 41.24 These reactions are triggered by the tertiary amino effect20,21 whereby a hydride from the N–CH2 or N–CH3 group adds to the polarised alkene, and then the iminium cation and the carbanion formed add to each other (Scheme 5). In the case of the attempted preparation of the acenaphthene Knoevenagel products 31–33, the reaction goes directly to the azepine by stirring aldehyde with the dicarbonyl compound in DMSO at room temperature in 40 to 80% yields. The widening of the exo angle allows the groups to get into positions to react more easily. The structures of the resulting three fused azepines 34–36 with various spiro cyclic dicarbonyl systems are shown in Fig. 7, with selected geometric data in Tables S4 and S5 (ESI†).
![]() | ||
Scheme 4 Examples of the conversion of peri-aminonaphthalene systems 8, 38 and 4022–24 to spiro derivatives initiated by the tertiary amino effect. |
![]() | ||
Scheme 5 Mechanism of formation of spiro system 34 from Knoevenagel product 31 initiated by hydride transfer from the N-methyl group to the activated alkene. |
The structures are similar to related naphthalene based systems10 except that the widening of the ϕ angle is retained. The N–C(H2)–C(spiro) ring atoms are displaced to the same side of the acenaphthene ring, with the strongest displacements for the methylene and spiro carbons (1.163–1.354 and 0.551–0.919 Å respectively). The remaining methylene carbon is displaced to a smaller degree in the opposite sense (Table S5†). Within the azepine ring, the nitrogen atom adopts partial pyramidal bonding geometry (sum of angles: 343.6–349.6°), one bond to the spiro centre is strained (1.551–1.562 Å), and the angles at nitrogen and the methylene carbons show notable angle strain (113–117°). These are the first reported spiro derivatives of this fused azepine system.
The aldehyde 44 gave the expected alkenes 45 and 46 by Knoevenagel reaction with malonitrile or nitromethane under reflux in methanol with ethylenediammonium diacetate as catalyst (Scheme 6). In contrast, just stirring aldehyde 44 with benzoyl-nitromethane, Meldrum's acid or cyclopentane-1,3-dione in DMSO at 20 °C gave fused azocine products 47–49, analogous to the behaviour of the more reactive acenaphthene derivatives (Scheme 7). Interestingly, on recrystallisation, some of the gem-benzoyl-nitro derivative 49 lost the benzoyl group, presumably due to the effect of water in the solvent, to give the fused nitro-azocine 50 (Scheme 7). Similar types of azocines have been reported from disubstituted biphenyls,21 however, we are not aware of any such derivatives of the fluoreno-azocine ring system in 47–50. The crystal structures of 44 and 45 were determined to examine the interaction between functional groups, and of 48 and 50 to confirm their molecular structures.
![]() | ||
Scheme 6 a) n-BuLi/TMEDA/60 °C/5 h, then I2/THF −78 °C; b) n-BuLi/ether/−78 °C then DMF, warm to 20 °C; (c) and (d) malonitrile or nitromethane/ethylenediammonium diacetate cat./methanol/reflux. |
![]() | ||
Scheme 7 (a)–(c): Cyclopentane-1,3-dione, PhCOCH2NO2, or Meldrum's acid/DMSO/20 °C; (d): heat in DCM/hexane in air. |
The aldehyde and ethenedinitrile derivatives 44 and 45 adopt similar molecular conformations, with Me2N⋯C separations of 2.691(3) and 2.8304(17) Å (Fig. 8, Table 5). In contrast, in the biphenyl series, the corresponding separations are quite different: 2.989(2) and 1.586(3)/1.604(3) Å respectively. In 44 the lack of rotational freedom in the fluorene has brought the Me2N- and –CHO functional groups closer together, and the Me2N⋯CO angle is 111.04(16)°, as would be expected for a n–π* interaction. The axis of the nitrogen lone pair lies at 9.5° to the Me2N⋯C(
O) vector. The greater separation of Me2N- and –CH
C(CN)2 groups in the constrained fluorene system 45, prevents the bond formation seen in the biphenyl series. The Me2N⋯C
C angle is favourable for n–π* interaction (110.80(10)°), though the Me2N⋯C distance is particularly long 2.8304(17) Å and the angle between the axis of the N lone pair and the Me2N⋯C vector is 8.5°. In the fluorene plane the Me2N- group is displaced towards the alkene which is displaced away, but the favourable alignment of groups in 44 and 45 are achieved by different combinations of (a) displacements of the groups to the opposite sides of the fluorene plane and (b) widening of the exo angles at the intervening ring fusions (Table 5).
![]() | ||
Fig. 8 Molecular structures of fluorenes 44 (left) and 45 (right), with the long n–π* interaction shown in red. |
X-ray crystallography also confirmed the structures of two of the fused azocines, 48 and 50 which are shown in Fig. 9 with selected molecular geometry in Tables S6 and S7 (ESI†). The spiro junction in the azocine ring of 48 leads to more sp3C–sp3C bond strain with C–C bonds of 1.561(2) and 1.565(2) Å to the spiro atom, than in the nitro derivative 50 (1.506(4) and 1.525(4) Å). In the azocine ring the nitrogen atom adopts a moderately pyramidal bonding geometry (sum of angles: 48: 350.60(13)°; 50: 348.8(2)°), and there is significant angular strain along the N–CH2–C–CH2 fragment (112.0–118.26°) with exception of the spiro carbon of 48. The N–C(H2)–C ring atoms are displaced to the same side of the fluorene ring, with the strongest displacements for the two carbons (1.430–1.458 and 0.847–0.953 Å). The remaining methylene carbon is displaced to a smaller degree in the opposite sense (Table S7†). These out of plane displacements are larger than in the related acenaphthene derivatives.
Footnote |
† Electronic supplementary information (ESI) available. CCDC 2069090–2069106 and 2069108. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d1ce00377a |
This journal is © The Royal Society of Chemistry 2021 |