Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme

Christopher J. Harding a, Emmajay Sutherland a, Jane G. Hanna b, Douglas R. Houston c and Clarissa M. Czekster *a
aSchool of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, UK. E-mail: cmc27@st-andrews.ac.uk
bArab Academy for Science, Technology, and Maritime Transport (AASTMT), Cairo Campus, Egypt
cInstitute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, King's Buildings, Waddington 1 Building, Edinburgh, EH9 3BF, UK

Received 24th March 2021 , Accepted 24th March 2021

First published on 14th April 2021


Abstract

Correction for ‘Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme’ by Christopher J. Harding et al., RSC Chem. Biol., 2021, 2, 230–240, DOI: 10.1039/D0CB00142B.


The authors regret that ref. 30–49 were incorrectly shown in the original article. The corrected references are shown here.

30. N. Canu, C. Tellier, M. Babin, R. Thai, I. Ajel, J. Seguin, O. Cinquin, R. Vinck, M. Moutiez, P. Belin, J. C. Cintrat and M. Gondry, Flexizyme-aminoacylated shortened tRNAs demonstrate that only the aminoacylated acceptor arms of the two tRNA substrates are required for cyclodipeptide synthase activity, Nucleic Acids Res., 2020, 48(20), 11615–11625.

31. N. Cvetesic, J. J. Perona and I. Gruic-Sovulj, Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps, J. Biol. Chem., 2012, 287(30), 25381–25394.

32. A. C. Bishop, T. K. Nomanbhoy and P. Schimmel, Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase, Proc. Natl. Acad. Sci. U. S. A., 2002, 99(2), 585–590.

33. M. C. Hartman, K. Josephson, C. W. Lin and J. W. Szostak, An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides, PLoS One, 2007, 2(10), e972.

34. N. Canu, P. Belin, R. Thai, I. Correia, O. Lequin, J. Seguin, M. Moutiez and M. Gondry, Incorporation of Non-canonical Amino Acids into 2,5-Diketopiperazines by Cyclodipeptide Synthases, Angew. Chem., Int. Ed. Engl., 2018, 57(12), 3118–3122.

35. I. Wohlgemuth, M. Beringer and M. V. Rodnina, Rapid peptide bond formation on isolated 50S ribosomal subunits, EMBO Rep., 2006, 7(7), 699–703.

36. K. Suto, Y. Shimizu, K. Watanabe, T. Ueda, S. Fukai, O. Nureki and K. Tomita, Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog, EMBO J., 2006, 25(24), 5942–5950.

37. M. Ohuchi, H. Murakami and H. Suga, The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus, Curr. Opin. Chem. Biol., 2007, 11(5), 537–542.

38. H. Murakami, A. Ohta, Y. Goto, Y. Sako and H. Suga, Flexizyme as a versatile tRNA acylation catalyst and the application for translation, Nucleic Acids Symp. Ser., 2006, (50), 35–36.

39. C. Zeymer and D. Hilvert, Directed Evolution of Protein Catalysts, Annu. Rev. Biochem., 2018, 87, 131–157.

40. C. S. Francklyn and A. Minajigi, tRNA as an active chemical scaffold for diverse chemical transformations, FEBS Lett., 2010, 584(2), 366–375.

41. A. M. Wagner, M. W. Fegley, J. B. Warner, C. L. Grindley, N. P. Marotta and E. J. Petersson, N-terminal protein modification using simple aminoacyl transferase substrates, J. Am. Chem. Soc., 2011, 133(38), 15139–15147.

42. D. G. Gibson, Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides, Nucleic Acids Res., 2009, 37(20), 6984–6990.

43. G. Winter, xia2: an expert system for macromolecular crystallography data reduction, J. Appl. Crystallogr., 2010, 43, 186–190.

44. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read, Phaser crystallographic software, J. Appl. Crystallogr., 2007, 40, 658–674.

45. P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Features and development of Coot, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 486–501.

46. P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. Urzhumtsev, P. H. Zwart and P. D. Adams, Towards automated crystallographic structure refinement with phenix.refine., Acta Crystallogr., Sect. D: Struct. Biol., 2012, 68, 352–367.

47. R. P. Joosten, F. Long, G. N. Murshudov and A. Perrakis, The PDB_REDO server for macromolecular structure model optimization, Iucrj, 2014, 1, 213–220.

48. B. Beckert and B. Masquida, Synthesis of RNA by In Vitro Transcription, Rna: Methods Protoc., 2011, 703, 29–41.

49. D. L. Liakhov, K. Il'genfrits, B. K. Chernov, S. M. Dragan, V. O. Rechinskii, D. K. Pokholok, V. L. Tunitskaia and S. N. Kochetkov, Site-specific mutagenesis of residue Lys-172 of phage T7 RNA polymerase: characterization of transcription properties of mutant proteins, Mol. Biol., 1992, 26(5), 1022–1035.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.


This journal is © The Royal Society of Chemistry 2021