Issue 5, 2019

Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate

Abstract

The mechanical properties of oxalic acid dihydrate and anhydrous oxalic acid (α and β polymorphic forms) were obtained by using rigorous theoretical solid-state methods based on density functional theory using plane waves and pseudopotentials. The calculated crystal structures and X-ray powder diffraction patterns of these materials were found to be in excellent agreement with the experimental information. Since the calculated elasticity matrices fullfilled the Born stability conditions, the corresponding crystal structures were found to be mechanically stable. A large number of relevant mechanical properties including the values of the bulk moduli and their pressure derivatives, shear and Young moduli, Poisson ratios, ductility and hardness indices, and mechanical anisotropy values of these materials were reported. The three forms of oxalic acid are highly anisotropic ductile materials having low hardness and bulk moduli. The three materials are shown to display small negative Poisson ratios (NPR) and to exhibit the phenomenon of negative linear compressibility (NLC) for applied pressures along the direction of the minimum Poisson ratio. In addition, they undergo pressure induced phase transitions for relatively small applied pressures. The analysis of the crystal structures of these materials as a function of pressure demonstrates that the mechanism of NLC of these materials is unrelated to the wine-rack structural mechanism commonly used to rationalize this phenomenon. The three forms of oxalic acid considered in this work are molecular crystals whose structures are characterized by structural elements which are not directly bonded but held together by weak van der Waals forces. The weak bonding between these elements is able to accommodate the structural variations originating from the application of pressure, but the resulting structural deformations appear to be counterintuitive and lead to the anomalous mechanical behavior of these materials.

Graphical abstract: Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2018
Accepted
04 Jan 2019
First published
04 Jan 2019

Phys. Chem. Chem. Phys., 2019,21, 2673-2690

Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate

F. Colmenero, Phys. Chem. Chem. Phys., 2019, 21, 2673 DOI: 10.1039/C8CP07188H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements