César Omar
Ramírez Quiroz
*a,
Yilei
Shen
a,
Michael
Salvador
ab,
Karen
Forberich
a,
Nadine
Schrenker
c,
George D.
Spyropoulos
a,
Thomas
Heumüller
a,
Benjamin
Wilkinson
d,
Thomas
Kirchartz
ef,
Erdmann
Spiecker
c,
Pierre J.
Verlinden
g,
Xueling
Zhang
g,
Martin A.
Green
d,
Anita
Ho-Baillie
d and
Christoph J.
Brabec
*ah
aFriedrich-Alexander University Erlangen-Nuremberg, Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Erlangen, Germany. E-mail: omar.quiroz@fau.de
bKaust Solar Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
cCenter for Nanoanalysis and Electron Microscopy (CENEM), Department Werkstoffwissenschaften, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
dThe Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
eIEK-5 Photovoltaik, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
fFaculty of Engineering, CENIDE, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
gTrina Solar, No. 2 Trina Road, Trina PV Industrial Park, Xinbei District, Changzhou, Jiangsu 213031, China
hFriedrich-Alexander University Erlangen-Nuremberg, Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen, Germany
First published on 15th May 2018
Correction for ‘Balancing electrical and optical losses for efficient 4-terminal Si-perovskite solar cells with solution processed percolation electrodes’ by César Omar Ramírez Quiroz et al., J. Mater. Chem. A, 2018, 6, 3583–3592.
HTL | ETL/electrode | J sc (mA cm−2) | V oc (V) | FF (%) | PCEs |
---|---|---|---|---|---|
a All values derived from J–V and EQE characterization represent the best performing devices from the same experimental run comprising 12 cells per experiment. b J sc and PCE values determined under AM 1.5 irradiation at 0.1 W cm−2 intensity. c J sc (EQE corrected) and PCE values determined under AM 1.5 irradiation at 0.1 W cm−2 intensity. d Measured efficiency when implementing 165 nm of MgF2 as antireflective (see Fig. S13). | |||||
CuSCN | PC60BM–ZnO:Al/Agb | 22.5 | 1.101 | 81.1 | 20.1 |
PEDOT:PSS | PC60BM–ZnO:Al/Agb | 19.4 | 0.901 | 80.2 | 14.0 |
CuSCN | PC60BM–ZnO:Al/AgNWb | 21.0 | 1.098 | 74.1 | 17.1 |
PEDOT:PSS | PC60BM–ZnO:Al/AgNWb | 18.2 | 0.902 | 74.5 | 12.1 |
PERL (bare)c | 41.5 | 0.680 | 79.5 | 22.4 | |
PERL filtered w/CuSCN cellc | 17.7 | 0.674 | 80.1 | 9.6 | |
PERL filtered w/PEDOT:PSS cellc | 16.0 | 0.673 | 80.1 | 8.6 | |
4-Terminal tandem PERL; CusCN-based | 26.7/26.9d | ||||
4-Terminal tandem PERL; PEDOT-based | 20.9 | ||||
IBC (bare)c | 41.3 | 0.651 | 75.1 | 20.2 | |
IBC filtered w/CuSCN cellc | 17.0 | 0.633 | 75.2 | 8.1 | |
IBC filtered w/PEDOT:PSS cellc | 15.2 | 0.634 | 75.2 | 7.3 | |
4-Terminal tandem IBC; CusCN-based | 25.2 | ||||
4-Terminal tandem IBC; PEDOT-based | 19.5 |
This journal is © The Royal Society of Chemistry 2018 |