Nidhi Guptaa,
Sonia Sharmabc,
Arun Rainaac,
Nisar A. Dangrooa,
Shashi Bhushan§
*bc and
Payare L. Sangwan*ac
aBioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India. E-mail: plsangwan@iiim.ac.in
bCancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
cAcademy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India
First published on 14th October 2016
A new series of 3,4-dihydro-2H-1,3-oxazine derivatives of bakuchiol 1 was synthesized through the Mannich-type condensation–cyclization reaction of 1 with formaldehyde and appropriate primary amines. On cytotoxicity evaluation against a panel of four human cancer cell lines, most of the derivatives showed a higher cytotoxic profile than the parent molecule. The best results were observed for compound 15 with IC50 values of 2, 2, 2.4 and 3 μM against MIA-Pa-Ca-2, HCT-116, MCF-7 and HL-60 cells, respectively. A mechanistic study of compound 15 revealed that it caused a loss in the mitochondrial membrane potential in a concentration-dependent manner, accompanied by the activation of caspase-9 and -3, which cleave PARP-1. It also activated caspase-8, which is involved in the extrinsic apoptotic pathway. Therefore, we demonstrated that it induces apoptosis via both intrinsic and extrinsic pathways in human pancreatic cancer MIA-Pa-Ca-2 cells.
Bakuchiol 1, a meroterpene isolated from Psoralea corylifolia (Leguminosae), is known for its various pharmacological activities.4–6 However, the cytotoxicity of bakuchiol has attracted considerable interest as it inhibits the proliferation of various human cancer cells, such as breast (MCF-7), prostate (PC-3), cervical (HeLa), gastric (AGS), lung (A-549), CNS (IMR-32), ovarian (OVCAR-5) and leukaemia (THP-1).7,8,10 The anticancer mechanism of its action involves a loss in the mitochondrial membrane potential, S-phase arrest, caspase 9/3 activation and DNA fragmentation as well as the inhibition of hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa B (NFκB) in a number of human cancer cell lines.8–10 The natural product 1 has also been found to facilitate tumour necrosis factor related apoptosis inducing ligand (TRAIL) induced apoptosis in human colon cancer cells (HCT-116 and HT-29).11 The key functionalities, such as phenolic-OH, aryl, vinyl and isopropylidene groups, embodied in bakuchiol make it amenable for a variety of chemical transformations. To date, several reports are available wherein considerable structural modification has been done on bakuchiol for the improvement of its anticancer activity.7,10,12–14 A literature survey revealed that 3,4-dihydro-2H-benzo[e][1,3]oxazine moieties exhibit a broad range of pharmacological activities, including anticancer, anti-inflammatory and anti-infective,15–18 which shows their large development value and wide potential as therapeutic agents. Therefore, in a continuation of our interest in the structural modification of natural products for the development of anticancer leads,7,19,20 herein, we report the synthesis of new 3,4-dihydro-2H-1,3-oxazine derivatives of bakuchiol by a Mannich-type condensation–cyclization reaction and their in vitro cytotoxicity evaluation against four human cancer cell lines (MIA-Pa-Ca-2, HCT-116, MCF-7 and HL-60). A mechanistic study was also carried out for the most potent analogue.
| Cell lines% growth inhibition | ||||
|---|---|---|---|---|
| Compound | HL-60 | MCF-7 | HCT-116 | MIA-Pa-Ca-2 |
| a Bold value indicates ≥50% growth inhibition against the cancer cell lines. | ||||
| 1 | 36 | 16 | 34 | 33 |
| 2 | 1 | 9 | 33 | 47 |
| 3 | 14 | 28 | 39 | 73 |
| 4 | 7 | 14 | 27 | 46 |
| 5 | 13 | 4 | 19 | 57 |
| 6 | 8 | 25 | 17 | 47 |
| 7 | 91 | 94 | 89 | 96 |
| 8 | 6 | 24 | 33 | 48 |
| 9 | 27 | 14 | 16 | 63 |
| 10 | 48 | 4 | 25 | 64 |
| 11 | 14 | 20 | 28 | 65 |
| 12 | 91 | 73 | 89 | 96 |
| 13 | 90 | 93 | 83 | 96 |
| 14 | 92 | 78 | 88 | 96 |
| 15 | 91 | 93 | 90 | 96 |
| 16 | 89 | 88 | 88 | 94 |
| 17 | 87 | 93 | 88 | 93 |
| 18 | 86 | 92 | 88 | 94 |
| 19 | 89 | 93 | 88 | 93 |
| 20 | 1 | 14 | 20 | 46 |
| 21 | 1 | 8 | 30 | 44 |
| 22 | 75 | 55 | 73 | 92 |
| 23 | 99 | 94 | 89 | 93 |
| 24 | 99 | 93 | 88 | 93 |
| 25 | 88 | 93 | 86 | 94 |
| 26 | 87 | 93 | 87 | 94 |
The structure activity relationship of the bakuchiol analogues based on growth inhibition can be summarized as follows: aliphatic primary amine analogues (7, 12–16, 23–26) showed better anticancer effects compared to the parent molecule (1) and aromatic primary amine analogues (2–6, 8–11, 20, 21). Among the aliphatic straight chain primary amine analogues, the cytotoxic activity was found to be enhanced with the increase in the number of carbon atoms along the chain length as a better inhibitory effect was observed for the octyl amine analogue (15) compared to the methyl amine analogue (14). Branched chain aliphatic primary amines analogues (25 and 26) also provided significant cytotoxicity results against all the cell lines examined. Alicyclic (17) and aralkyl (18 and 19) primary amine analogues were found to be more potent against MIA-Pa-Ca-2 and MCF-7 than against the other two cell lines tested. The hydroxyalkyl group-containing analogue (23) also sensitized all the experimental cell lines, with HL-60 the most affected.
Furthermore, the compounds that showed growth inhibition of >50% at 10 μM concentration were screened at four different concentrations (0.1, 1, 5 and 10 μM) along with compound 1 for calculation of their IC50 values. The calculated IC50 of the selected compounds are provided in Table 2. Promising IC50 values (2.0 to 7.0 μM) were observed for compounds 7, 12–19 and 23–26 against all the cell lines examined (HL-60, MIA-Pa-Ca-2, MCF-7 and HCT-116). Compound 15 showed a better cytotoxic profile (2.0 to 3.0 μM) against all the selected cell lines. The pancreatic cell line (MIA-Pa-Ca-2) proved the most sensitive (2.0 to 3.0 μM) towards semi-synthetic analogues, where, in particular, compound 15 exhibited the maximum cytotoxic effect, with an IC50 value of 2.0 μM and hence it was chosen for the further cell death mechanistic study.
| Compound | Breast MCF-7 | Pancreatic MIA-Pa-Ca-2 | Colon HCT-116 | Leukaemia HL-60 |
|---|---|---|---|---|
| 1 | >10 | >10 | >10 | >10 |
| 7 | 3 | 3 | 3.6 | 6 |
| 12 | 3.6 | 3 | 5.5 | 5 |
| 13 | 3 | 2.5 | 2.5 | 6 |
| 14 | 6 | 3 | 6.5 | 7 |
| 15 | 2.4 | 2 | 2 | 3 |
| 16 | 5.2 | 3 | 4 | 6 |
| 17 | 3.6 | 3 | 3 | 3 |
| 18 | 5 | 3 | 3.7 | 3 |
| 19 | 3.2 | 3 | 2.5 | 3 |
| 23 | 6 | 3 | 6 | 3 |
| 24 | 6 | 3 | 3.7 | 4 |
| 25 | 6 | 3 | 3.8 | 5 |
| 26 | 3 | 3 | 4 | 6 |
:
MeOH (1
:
1) extract of seeds of Psoralea corylifolia and characterized by spectroscopic techniques, as previously reported by us.7
:
hexane (1
:
49) as the eluent to afford the desired pure products 2–26 in 80–85% yields. The spectral data of all the derivatives (2–26) are given below.
CH2)CH3), 1.48–1.50 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.97 (2H, m,
CHCH2CH2), 4.59 (2H, s, Ar–CH2–N–), 4.97–5.12 (3H, m, –CH2–CH
and –C(CH
CH2)), 5.33 (2H, s, –O–CH2–N–), 5.87 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.73 (1H, d, J = 8.0 Hz, Ar-H), 6.91 (1H, t, J = 8.0 Hz, Ar-H), 7.01 (1H, s, Ar-H), 7.08–7.13 (3H, m, 3 × Ar1-H), 7.24 (2H, dd, J = 8.0, 4.0 Hz, 2 × Ar1-H). 13C NMR (125 MHz, CDCl3): δ 153.57, 148.42, 145.94, 136.12, 131.30, 130.86, 129.29 × 2, 126.55, 125.71, 124.84, 124.30, 121.57, 120.75, 118.46 × 2, 117.00, 111.95, 79.75, 50.49, 42.57, 41.32, 25.73, 23.43, 23.27, 17.69. IR γmax (neat): 3415, 2963, 2922, 2853, 1600, 1496, 1419, 1202, 1117, 1018, 755, 694, 601, 529 cm−1. HRMS m/z calcd for C26H31NO [M + H]+ 374.2478, found 374.2478.
CH2)CH3), 1.48–1.50 (2H, m, =CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.97 (2H, m,
CHCH2CH2), 4.6 (4H, s, Ar–CH2–N– and Ar1–CH2OH), 4.97–5.01 (3H, m, CH2–CH
and –CH
CH2), 5.33 (2H, s, –O–CH2–N–), 5.87 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.73 (1H, d, J = 8.0 Hz, Ar-H), 6.90 (1H, d, J = 8.0 Hz, Ar-H), 6.99–7.01 (2H, m, Ar-H and Ar1-H), 7.10–7.13 (2H, m, 2 × Ar1-H), 7.22 (1H, t, J = 8.0 Hz, Ar1-H). 13C NMR (125 MHz, CDCl3): δ 154.89, 150.02, 147.32, 143.60, 137.59, 132.77, 132.31, 130.93, 127.89, 127.15, 126.22, 125.74, 122.10, 121.42, 118.83, 118.44, 118.12, 113.40, 80.89, 66.79, 51.89, 43.99, 42.70, 27.16, 24.79, 24.67, 19.12. IR γmax (neat): 3381, 2961, 2924, 2855, 1728, 1606, 1498, 1453, 1375, 1236, 1116, 1000, 972, 949, 832, 697, 598 cm−1 HRMS m/z calcd for C27H33NO2 [M + H]+ 404.2584, found 404.2582.
CH2)CH3), 1.48–1.50 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.91–1.98 (2H, m,
CHCH2CH2), 4.54 (2H, s, Ar–CH2–N–), 4.98–5.12 (3H, m, CH2–CH
and –CH
CH2), 5.28 (2H, s, –O–CH2–N), 5.87 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.73 (1H, d, J = 8.0 Hz, Ar-H), 6.99–7.01 (3H, m, 1 × Ar1-H and 2 × Ar-H), 7.11–7.19 (3H, m, 3 × Ar1-H). 13C NMR (125 MHz, CDCl3): δ 153.35, 147.08, 145.89, 136.31, 131.33, 131.04, 129.21 × 2, 126.62, 126.45, 125.88, 124.82, 124.29, 120.36, 119.82 × 2, 117.04, 112.00, 79.61, 50.70, 42.59, 41.30, 25.74, 23.41, 23.27, 17.70. IR γmax (neat): 3419, 2963, 2922, 2853, 1594, 1494, 1450, 1374, 1231, 1097, 1018, 971, 952, 812, 530 cm−1. HRMS m/z calcd for C26H30ClNO [M + H]+ 408.2089, found 408.2083.
CH2)CH3), 1.48–1.51 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.91–1.98 (2H, m,
CHCH2CH2), 3.73 (3H, s, Ar1-OCH3), 4.54 (2H, s, Ar–CH2–N–), 4.97–5.01 (3H, m, CH2–CH
and –CH
CH2), 5.28 (2H, s, –O–CH2–N–), 5.87 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.73 (1H, d, J = 8.0 Hz, Ar-H), 6.77–6.81 (2H, m, 2 × Ar1-H), 7.0 (1H, d, J = 1.9 Hz, Ar-H), 7.03–7.07 (2H, m, 2 × Ar1-H), 7.12 (1H, dd, J = 8.5, 2.0 Hz, Ar-H). 13C NMR (125 MHz, CDCl3): δ 155.04, 153.53, 145.92, 142.32, 136.00, 131.32, 130.75, 126.54, 125.67, 124.81, 124.29, 120.90 × 2, 120.72, 116.88, 114.51 × 2, 111.93, 80.98, 55.51, 51.16, 42.55, 41.29, 25.73, 23.38, 23.25, 17.68. IR γmax (neat): 3441, 2962, 2922, 2853, 1612, 1596, 1583, 1503, 1454, 1420, 1374, 1128, 1053, 1029, 945, 746 cm−1. HRMS m/z calcd for C27H33NO2 [M + H]+ 404.2584, found 404.2585.
CH2)CH3), 1.38–1.42 (2H, m,
CHCH2CH2), 1.49 and 1.58 (3H each, s,
C(CH3)2), 1.83–1.89 (2H, m,
CHCH2CH2), 4.44 (2H, s, Ar–CH2–N–), 4.97–5.01 (3H, m, CH2–CH
and –CH
CH2), 5.17 (2H, s, –O–CH2–N–), 5.78 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 5.98 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.13 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.65 (1H, d, J = 8.0 Hz, Ar-H), 6.80–6.86 (2H, m, 2 × Ar1-H), 6.91 (1H, d, J = 1.8 Hz, Ar-H), 6.94–6.98 (2H, m, 2 × Ar1-H), 7.05 (1H, dd, J = 8.4, 2.0 Hz, Ar-H). 13C NMR (125 MHz, CDCl3) δ 152.41, 144.84, 143.88, 143.86, 135.85, 130.28, 129.88, 125.44, 124.78, 123.78, 123.26, 119.63, 119.57, 119.40, 115.94, 114.84, 114.66, 110.96, 79.30, 50.05, 41.48, 40.18, 24.80, 22.35, 22.23, 16.67. IR γmax (neat): 3408, 2922, 2852, 1737, 1634, 1509, 1463, 1374, 1229, 1158, 1116, 1018, 972, 948, 918, 827, 669, 537 cm−1. HRMS m/z calcd for C26H30FNO [M + H]+ 392.2384, found 392.2383.
CH2)CH3), 1.15–1.25 (6H, m, –NCH2(CH2)3), 1.39–1.48 (4H, m,
CHCH2CH2 and –NCH2CH2), 1.50 and 1.59 (3H each, s,
C(CH3)2), 1.84–1.90 (2H, m,
CHCH2CH2), 2.60–2.65 (2H, m, –N CH2–), 3.87 (2H, s, Ar–CH2–N–), 4.75 (2H, s, –O–CH2–N–), 4.97–5.01 (3H, m, CH2–CH
and –CH
CH2), 5.78 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 5.96 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.11 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.62 (1H, d, J = 8.0 Hz, Ar-H), 6.86 (1H, d, J = 4.0 Hz, Ar-H), 7.04 (1H, dd, J = 8.4, 2.0 Hz, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.47, 145.99, 135.69, 131.19, 130.44, 126.66, 125.47, 125.10, 124.87, 120.09, 116.40, 111.90, 82.42, 51.25, 50.28, 42.35, 41.20, 31.77, 28.13, 26.94, 25.72, 23.46, 23.30, 22.68, 17.67, 14.08. IR γmax (neat): 3345, 2925, 2854, 1610, 1498, 1454, 1376, 1115, 1019, 914, 811, 522 cm−1. HRMS m/z calcd for C26H39NO [M + H]+ 382.3104, found 382.3082.
CH2)CH3), 1.47–1.51 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.98 (2H, m,
CHCH2CH2), 4.68 (2H, s, Ar–CH2–N–), 4.97–5.01 (3H, m, CH2–CH
and –CH
CH2), 5.35 (2H, s, –O–CH2–N–), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.09 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.80 (1H, d, J = 8.0 Hz, Ar-H), 7.04 (1H, d, J = 1.6 Hz, Ar-H), 7.16 (1H, dd, J = 8.5, 1.9 Hz, Ar-H), 7.38 (1H, s, Ar1-H), 7.46 (2H, s, 2 × Ar1-H). 13C NMR (125 MHz, CDCl3): δ 153.08, 149.32, 145.78, 136.89, 132.81, 132.62, 131.61, 131.42, 126.24, 126.17, 124.77, 124.43, 124.22, 122.25, 119.75, 117.36, 117.03, 117.01, 114.27, 112.01, 77.91, 50.79, 42.53, 41.31, 25.69, 23.33, 23.25, 17.62. IR γmax (neat): 3584, 2965, 2922, 2856, 1620, 1500, 1477, 1403, 1385, 1277, 1182, 1135, 1001, 965, 880, 682 cm−1. HRMS m/z calcd for C28H29F6NO [M + H]+ 510.2226, found 510.2211.
CH2)CH3), 1.46–1.51 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.91–1.97 (2H, m,
CHCH2CH2), 4.67 (2H, s, Ar–CH2–N–), 4.98–5.11 (3H, m, CH2–CH
and –CH
CH2), 5.37 (2H, s, –O–CH2–N–), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.06 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.22 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.77 (1H, d, J = 8.0 Hz, Ar-H), 7.04 (1H, s, Ar-H), 7.15 (1H, dd, J = 8.5, 1.9 Hz, Ar-H), 7.37 (2H, m, 2 × Ar1-H), 7.70–7.76 (1H, m, Ar1-H), 7.91 (1H, s, Ar1-H). 13C NMR (125 MHz, CDCl3) δ 153.09, 149.25, 149.23, 145.87, 136.61, 131.38, 131.36, 130.06, 126.34, 126.08, 124.77, 124.30, 123.31, 119.97, 117.24, 115.78, 112.37, 112.05, 78.40, 50.51, 42.51, 41.28, 25.70, 23.37, 23.22, 17.67. IR γmax (neat): 3584, 3353, 2922, 2851, 1737, 1649, 1508, 1459, 1245, 1020, 829, 668, 536, 527 cm−1. HRMS m/z calcd for C26H30N2O3 [M + H]+ 419.2329, found 419.2297.
CH2)CH3), 1.46–1.50 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.97 (2H, m,
CHCH2CH2), 2.23 (3H, s, Ar1–CH3), 4.52 (2H, s, Ar–CH2–N–), 4.98–5.12 (3H, m, CH2–CH
and –CH
CH2), 5.27 (2H, s, –O–CH2–N–), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.02 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.71 (1H, d, J = 8.0 Hz, Ar-H), 6.97–7.04 (5H, m, 1 × Ar-H, 4 × Ar1-H), 7.10 (1H, dd, J = 8.4, 1.6 Hz, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.63, 146.18, 146.00, 136.03, 131.34, 131.19, 130.79, 2 × 129.88, 126.67, 125.72, 124.92, 124.41, 120.81, 2 × 118.88, 116.99, 112.03, 80.31, 50.76, 42.65, 41.22, 25.81, 23.47, 23.33, 20.63, 17.78. IR γmax (neat): 3345, 2963, 2921, 2853, 1612, 1514, 1498, 1460, 1374, 1232, 1113, 1017, 971, 915 cm−1. HRMS m/z calcd for C27H33NO [M + H]+ 388.2635, found 388.2629.
CH2)CH3), 1.46–1.51 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.98 (2H, m,
CHCH2CH2), 2.2 (3H, s, Ar1–CH3), 4.53 (2H, s, Ar–CH2–N–), 4.98–5.11 (3H, m, CH2–CH
and –CH
CH2), 5.25 (2H, s, –O–CH2–N–), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.72–6.80 (2H, m, Ar-H and Ar1-H), 6.87–6.93 (1H, m, 1 × Ar1-H), 6.97–7.04 (2H, m, Ar-H and Ar1-H), 7.14 (1H, dd, J = 8.5, 2.0 Hz, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.17, 145.86, 136.39, 131.37, 131.14, 126.37, 125.91, 124.80, 124.29, 120.10, 117.51, 117.37, 117.07, 114.38, 112.03, 108.29, 108.13, 79.73, 51.05, 42.70, 41.24, 25.75, 23.36, 23.26, 17.67. IR γmax (neat): 3418, 2966, 2920, 2855, 1732, 1631, 1606, 1583, 1519, 1500, 1453, 1422, 1274, 1228, 954, 915, 812 cm−1. HRMS m/z calcd for C26H29F2NO [M + H]+ 410.2290, found 410.2288.
CH2)CH3), 1.32–1.41 (2H, m, –NCH2CH2CH2CH3), 1.49–1.58 (4H, m,
CHCH2CH2 and –NCH2CH2CH2), 1.60 and 1.69 (3H each, s,
C(CH3)2), 1.94–2.00 (2H, m,
CHCH2CH2), 2.73–2.76 (2H, m, –NCH2), 3.99 (2H, s, Ar–CH2–N–), 4.87 (2H, s, –O–CH2–N–), 5.0–5.15 (3H, m, CH2–CH
and –CH
CH2), 5.87 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.06 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.24 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.73 (1H, d, J = 8.0 Hz, Ar-H), 6.99 (1H, d, J = 4.0 Hz, Ar-H), 7.15 (1H, dd, J = 8.4, 2.0 Hz, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.50, 146.01, 135.74, 131.30, 130.45, 126.60, 125.47, 125.15, 124.88, 120.11, 116.41, 111.89, 82.61, 51.08, 50.24, 42.55, 41.31, 30.28, 25.75, 23.42, 23.27, 20.41, 17.69, 14.02. IR γmax (neat): 3443, 2960, 2928, 2859, 1633, 1613, 1498, 1454, 1375, 1231, 1140, 1118, 916 cm−1. HRMS m/z calcd for C24H35NO [M + H]+ 354.2791, found 354.2776.
CH2)CH3), 1.11 (8H, m, –NCH2CH2(CH2)4CH3), 1.30–1.38 (4H, m,
CHCH2CH2 and –NCH2CH2(CH2)4CH3), 1.41 and 1.50 (3H each, s,
C(CH3)2), 1.76–1.81 (2H, m,
CHCH2CH2), 2.54 (2H, m, –NCH2), 3.78 (2H, s, Ar–CH2–N–), 4.65 (2H, s, –O–CH2–N–), 4.80–4.95 (3H, m, CH2–CH
and –CH
CH2), 5.70 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 5.86 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.05 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.53 (1H, d, J = 8.0 Hz, Ar-H), 6.78 (1H, s, Ar-H), 6.95 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 152.46, 144.92, 134.61, 130.15, 129.37, 125.67, 124.47, 124.09, 123.85, 119.05, 115.39, 110.90, 81.55, 50.33, 49.20, 41.51, 40.30, 30.86, 28.23, 27.16, 26.22, 24.72, 22.39, 22.25, 21.65, 16.66, 13.13. IR γmax (neat): 3310, 2957, 2926, 2855, 1633, 1498, 1376, 1230, 1098, 914 cm−1. HRMS m/z calcd for C27H41NO [M + H]+ 396.3261, found 396.3233.
CH2)CH3), 1.55–1.59 (2H, m,
CHCH2CH2), 1.66 and 1.75 (3H each, s,
C(CH3)2), 2.00–2.06 (2H, m,
CHCH2CH2), 2.64 (3H, s, –NCH3), 3.98 (2H, s, Ar–CH2–N–), 4.82 (2H, s, –O–CH2–N–), 5.06–5.21 (3H, m, CH2–CH
and –C(CH
CH2)), 5.95 (1H, dd, J = 17.0, 10.80 Hz, –CH
CH2), 6.16 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.30 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.79 (1H, d, J = 8.0 Hz, Ar-H), 7.02 (1H, t, J = 8.0 Hz, Ar-H), 7.20 (1H, dd, J = 8.4, 2.0 Hz, Ar-H). 13C NMR (125 MHz, CDCl3): δ 152.99, 145.97, 135.76, 131.20, 130.60, 126.72, 125.57, 125.25, 124.93, 119.68, 116.49, 112.00, 83.89, 52.21, 42.58, 41.36, 39.78, 25.80, 23.46, 23.32, 17.74. IR γmax (neat): 3418, 2962, 2924, 2853, 1633, 1614, 1581, 1499, 1232, 1050, 884, 859, 746 cm−1. HRMS m/z calcd for C21H29NO [M + H]+ 312.2322, found 312.2317.
CH2)CH3), 1.34–1.37 (10H, m, –NCH2 CH2(CH2)5CH3), 1.55–1.63 (4H, m,
CHCH2CH2 and –NCH2CH2(CH2)5), 1.66 and 1.75 (3H each, s,
C(CH3)2), 2.00–2.04 (2H, m,
CHCH2CH2), 2.78 (2H, m, –NCH2), 4.02 (2H, s, Ar–CH2–N–), 4.90 (2H, s, –O–CH2–N–), 5.06–5.20 (3H, m, CH2–CH
and –CH
CH2), 5.95 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.13 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.28 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.78 (1H, d, J = 8.0 Hz, Ar-H), 7.02 (1H, s, Ar-H), 7.19 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.52, 145.96, 135.67, 131.16, 130.41, 126.75, 125.54, 125.16, 124.95, 120.11, 116.45, 112.02, 82.56, 51.45, 50.32, 42.64, 41.41, 31.93, 29.58, 29.37, 28.25, 27.33, 25.78, 23.47, 23.31, 22.76, 17.70, 14.21. IR γmax (neat): 3297, 2956, 2924, 2854, 1462, 1376, 1189, 1138, 1116, 1018, 771 cm−1. HRMS m/z calcd for C28H43NO [M + H]+ 410.3417, found 410.3377.
CH2)CH3), 1.55–1.65 (4H, m,
CHCH2CH2 and–NCH2CH2CH3), 1.66 and 1.75 (3H each, s,
C(CH3)2), 2.01–2.07 (2H, m,
CHCH2CH2), 2.76 (2H, m, –NCH2), 4.03 (2H, s, Ar–CH2–N–), 4.91 (2H, s, –O–CH2–N–), 5.06–5.20 (3H, m, CH2–CH
and –CH
CH2), 5.95 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.13 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.28 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.78 (1H, d, J = 8.0 Hz, Ar-H), 7.02 (1H, s, Ar-H), 7.20 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.56, 145.99, 135.66, 131.17, 130.44, 126.78, 125.54, 125.16, 124.95, 120.14, 116.48, 111.98, 82.64, 53.30, 50.25, 42.59, 41.38, 25.80, 23.48, 23.34, 21.37, 17.73, 11.76. IR γmax (neat): 3299, 3081, 2962, 2926, 2873, 2854, 2750, 1730, 1633, 1612, 1581, 1498, 1454, 1376, 1343, 1230, 1141, 1117, 969, 939, 912, 812, 746 cm−1. HRMS m/z calcd for C23H33NO [M + H]+ 340.2635, found 340.2640.
CH2)CH3) and cyclohexyl (–CH2–)3, 1.38–1.42 (2H, m,
CHCH2CH2), 1.49 and 1.58 (3H each, s,
C(CH3)2), 1.62–1.66 (2H, m, cyclohexyl –CH(–CH2–)2), 1.86 (4H, m,
CHCH2CH2 and cyclohexyl –CH(–CH2–)2), 2.58 (1H, m, –NCH), 4.03 (2H, s, Ar–CH2–N–), 4.91 (2H, s, –O–CH2–N), 5.06–5.20 (3H, m, CH2–CH
and –CH
CH2), 5.95 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.13 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.28 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.78 (1H, d, J = 8.0 Hz, Ar-H), 7.02 (1H, s, Ar-H), 7.20 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.30, 144.85, 134.44, 130.08, 129.05, 125.69, 124.21, 123.85, 123.46, 120.50, 115.48, 110.87, 79.21, 57.59, 46.31, 41.49, 40.25, 2 × 30.60, 24.85, 24.68, 2 × 24.42, 22.37, 22.22, 16.62. IR γmax (neat): 3437, 3081, 2927, 2854, 1733, 1581, 1498, 1450, 1418, 1376, 1330, 1230, 1125, 1109, 915, 746 cm−1. HRMS m/z calcd for C26H37NO [M + H]+ 380.2948, found 380.2947.
CH2)CH3), 1.69–1.73 (2H, m,
CHCH2CH2), 1.79 and 1.88 (3H each, s,
C(CH3)2), 2.12 (2H, m,
CHCH2CH2), 2.97–3.01 (2H, m, NCH2CH2Ar1), 3.12–3.16 (2H, m, NCH2CH2Ar1) 4.12 (2H, s, Ar–CH2–N–), 4.98 (2H, s, –O–CH2–N–), 5.15–5.29 (3H, m, CH2–CH
and –C(CH
CH2)), 6.02 (1H, dd, J = 17.0, 10.80 Hz, –CH
CH2), 6.20 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.38 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.87 (1H, d, J = 8.0 Hz, Ar-H), 7.09 (1H, d, Ar-H), 7.26–7.41 (6H, m, 1 × Ar-H and 5 × Ar1-H). 13C NMR (125 MHz, CDCl3): δ 153.64, 146.08, 139.97, 135.87, 131.33, 130.63, 2 × 128.88, 2 × 128.50, 126.85, 126.29, 125.73, 125.28, 125.07, 120.16, 116.68, 112.15, 82.71, 53.23, 50.55, 42.58, 41.40, 34.93, 25.99, 23.60, 23.47, 17.85. IR γmax (neat): 3440, 3027, 2963, 2923, 2854, 1729, 1633, 1612, 1581, 1497, 1454, 1374, 1329, 1231, 1125, 1020, 971, 913, 812, 746, 698 cm−1. HRMS m/z calcd for C28H35NO [M + H]+ 402.2791, found 402.2788.
CH2)CH3), 1.35–1.41 (2H, m,
CHCH2CH2), 1.48 and 1.57 (3H each, s,
C(CH3)2), 1.83–1.88 (2H, m,
CHCH2CH2), 2.68–2.72 (2H, m, –NCH2CH2Ar1), 2.86–2.90 (2H, m, –NCH2CH2Ar1), 3.71 and 3.72 (3H each, s, Ar1-OCH3), 3.88 (2H, s, Ar–CH2–N–), 4.75 (2H, s, –O–CH2–N–), 4.88–5.03 (3H, m, CH2–CH
and –C(CH
CH2)), 5.77 (1H, dd, J = 17.0, 10.80 Hz, –CH
CH2), 5.96 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.13 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.60–6.66 (4H, m, 1 × Ar-H and 3 × Ar1-H), 6.85 (1H, d, J = 4.0 Hz, Ar-H), 7.02 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.51, 148.88, 147.55, 145.98, 135.78, 132.41, 131.15, 130.53, 126.69, 125.59, 125.12, 124.88, 120.64, 120.10, 116.56, 112.02, 111.97, 111.27, 82.65, 55.88, 55.84, 53.20, 50.46, 42.54, 41.39, 34.62, 25.84, 23.45, 23.32, 17.73. IR γmax (neat): 3079, 2961, 2927, 2854, 1633, 1610, 1590, 1515, 1504, 1463, 1417, 1330, 1234, 1156, 1141, 1030, 936, 915, 810, 746 cm−1. HRMS m/z calcd for C30H39NO3 [M + H]+ 462.3003, found 462.2992.
CH2)CH3), 1.46–1.50 (2H, m,
CHCH2CH2), 1.57 and 1.67 (3H each, s,
C(CH3)2), 1.91–1.98 (2H, m,
CHCH2CH2), 3.90 (3H, s, Ar1-OCH3), 4.53 (2H, s, Ar–CH2–N–), 4.97–5.12 (3H, m, CH2–CH
and –CH
CH2), 5.30 (2H, s, –O–CH2–N–), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.73–6.88 (3H, m, 1 × Ar-H and 2 × Ar1-H), 6.99–7.03 (2H, m, 2 × Ar1-H), 7.11–7.18 (2H, m, 2 × Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.35, 152.14, 145.94, 137.63, 135.90, 131.29, 130.76, 126.69, 125.75, 124.84, 124.37, 124.26, 121.11, 2 × 121.05, 116.87, 111.99, 111.20, 80.60, 55.48, 50.41, 42.54, 41.30, 25.80, 23.43, 23.30, 17.74. IR γmax (neat): 3441, 2962, 2922, 2853, 1612, 1596, 1583, 1503, 1454, 1420, 1374, 1128, 1053, 1029, 945, 746 cm−1. HRMS m/z calcd for C27H33NO2 [M + H]+ 404.2584, found 404.2582.
CH2)CH3), 1.45–1.50 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.98 (2H, m,
CHCH2CH2), 4.17–4.19 (4H, m, –O(CH2)2O–), 4.50 (2H, s, Ar–CH2–N–), 4.97–5.12 (3H, m, CH2–CH
and –CH
CH2), 5.24 (2H, s, –O–CH2–N–), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.03 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.20 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.58–6.65 (2H, m, Ar-H and Ar1-H), 6.71–6.77 (2H, m, 2 × Ar1-H), 6.99 (1H, d, J = 4.0 Hz, Ar-H), 7.10–7.13 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.42, 145.96, 143.70, 143.07, 138.81, 135.99, 131.32, 130.76, 126.50, 125.71, 124.90, 124.34, 120.64, 117.59, 116.96, 112.77, 111.96, 108.54, 80.70, 64.54, 64.23, 51.0, 41.60, 41.22, 25.75, 23.44, 23.23, 17.75. IR γmax (neat): 3079, 2967, 2924, 2873, 2797, 1727, 1625, 1612, 1588, 1513, 1504, 1245, 1205, 1113, 1069, 945, 905, 754, 709 cm−1. HRMS m/z calcd for C28 H33NO3 [M + H]+ 432.2533, found 432.2549.
CH2)CH3), 1.56–1.58 (2H, m,
CHCH2CH2), 1.65 and 1.74 (3H each, s,
C(CH3)2), 1.99–2.05 (2H, m,
CHCH2CH2), 3.96 (2H, s, –N–CH2–C–), 4.04 (2H, s, Ar–CH2–N–), 4.91 (2H, s, –O–CH2–N–), 5.05–5.20 (3H, m, CH2–CH
and –CH
CH2), 5.93 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.11 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.26–6.30 (2H, m, Ar–CH
CH– and Ar1–CH), 6.37 (1H, m, Ar1–CH), 6.81 (1H, d, J = 8.0 Hz, Ar-H), 7.01 (1H, m, Ar-H), 7.21 (1H, m, Ar-H), 7.46 (1H, m, Ar1–CH). 13C NMR (125 MHz, CDCl3): δ 153.22, 151.64, 145.93, 142.68, 135.96, 131.25, 130.82, 126.68, 125.67, 125.23, 124.91, 119.46, 116.63, 112.06, 110.23, 109.05, 81.93, 49.35, 48.09, 42.55, 41.52, 25.99, 23.42, 23.30, 17.75. IR γmax (neat): 3418, 2965, 2917, 2854, 1728, 1633, 1612, 1581, 1499, 1420, 1363, 1330, 1230, 1124, 1013, 969, 938, 812, 736, 599 cm−1. HRMS m/z calcd for C25H31NO2 [M + H]+ 378.2428, found 378.2414.
CH2)CH3), 1.46–1.51 (2H, m,
CHCH2CH2), 1.58 (3H, s,
C–CH3), 1.67 (7H, s,
C–CH3 and –NCH2(CH2)2 CH2OH), 1.95 (2H, m,
CHCH2CH2), 2.78 (2H, m, –NCH2), 3.63 (2H, m, –CH2OH), 3.98 (2H, s, Ar–CH2–N–), 4.85 (2H, s, –O–CH2–N–), 4.98–5.12 (3H, m, CH2–CH
and –CH
CH2), 5.86 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.04 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.21 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.72 (1H, d, J = 8.0 Hz, Ar-H), 6.97 (1H, s, Ar-H), 7.14 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.04, 145.91, 136.00, 131.31, 130.75, 126.51, 125.16, 124.87, 124.81, 119.50, 116.48, 111.96, 82.13, 62.64, 51.15, 49.91, 42.55, 41.28, 31.17, 25.74, 25.15, 23.39, 23.25, 17.69. IR γmax (neat): 3417, 2091, 1657, 1651, 1644, 1633, 1451, 1132, 1115, 1071, 748, 666 cm−1. HRMS m/z calcd for C24H35NO2 [M + H]+ 370.2741, found 370.2722.
CH2)CH3), 1.46–1.51 (2H, m,
CHCH2CH2), 1.58 and 1.67 (3H each, s,
C(CH3)2), 1.92–1.98 (2H, m,
CHCH2CH2), 2.58 (4H, s, –N(CH2)2NH2), 3.93 (2H, s, Ar–CH2–N–), 4.77 (2H, s, –O–CH2–N–), 4.98–5.12 (3H, m, CH2–CH
and –CH
CH2), 5.87 (1H, dd, J = 12.0 Hz, 8.0 Hz, –CH
CH2), 6.03 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.22 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.72 (1H, d, J = 8.0 Hz, Ar-H), 6.97 (1H, s, Ar-H), 7.13 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 152.94, 145.96, 135.90, 131.35, 130.69, 126.64, 125.58, 125.23, 124.86, 119.69, 116.48, 111.97, 83.92, 2 × 52.22, 42.54, 41.31, 39.78, 25.75, 23.44, 23.30, 17.73. IR γmax (neat): 3418, 2924, 2852, 2080, 1633, 1613, 1499, 1446, 1231, 916, 747 cm−1. HRMS m/z calcd for C22H32N2O [M + H]+ 341.2587, found 341.2626.
CH2)CH3), 1.48–1.51 (2H, m,
CHCH2CH2), 1.59 and 1.68 (3H each, s,
C(CH3)2), 1.84 (1H, m, –NCH2CH(CH3)2), 1.96 (2H, m,
CHCH2CH2), 2.51 (2H, d, J = 8.0 Hz, –NCH2–), 3.93 (2H, s, Ar–CH2–N–), 4.81 (2H, s, –O–CH2–N–), 5.00–5.14 (3H, m, CH2–CH
and –CH
CH2), 5.87 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 6.03 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.22 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.72 (1H, d, J = 8.0 Hz, Ar-H), 6.97 (1H, s, Ar-H), 7.13 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 153.71, 145.98, 135.72, 131.17, 130.38, 126.87, 125.51, 125.24, 125.00, 120.23, 116.54, 112.00, 83.58, 59.54, 50.69, 42.69, 41.43, 26.85, 25.84, 23.51, 23.71, 2 × 20.71, 17.79. IR γmax (neat): 3437, 2967, 2925, 2098, 1650, 1644, 1634, 1499, 1462, 1384, 1331, 1170, 970, 811 cm−1. HRMS m/z calcd for C24H35NO [M + H]+ 354.2791, found 354.2788.
CHCH2CH2), 1.49 and 1.58 (3H each, s,
C(CH3)2), 1.84–1.90 (2H, m,
CHCH2CH2), 2.97–3.03 (1H, m, CH(CH3)2), 3.93 (2H, s, Ar–CH2–N–), 4.84 (2H, s, –O–CH2–N–), 4.99–5.03 (3H, m, CH2–CH
and –CH
CH2), 5.78 (1H, dd, J = 12.0, 8.0 Hz, –CH
CH2), 5.94 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.13 (1H, d, J = 16.0 Hz, Ar–CH
CH–), 6.60 (1H, d, J = 8.0 Hz, Ar-H), 6.88 (1H, s, Ar-H), 7.01 (1H, m, Ar-H). 13C NMR (125 MHz, CDCl3): δ 154.43, 145.46, 135.07, 131.16, 130.32, 127.31, 126.28, 125.36, 124.72, 121.32, 116.11, 111.94, 80.67, 50.27, 47.52, 42.58, 41.28, 25.64, 23.50, 23.29, 2 × 21.37, 17.60. IR γmax (neat): 3437, 2967, 2925, 2098, 1650, 1644, 1634, 1499, 1462, 1384, 1331, 1170, 970, 811 cm−1. HRMS m/z calcd for C23H33NO [M + H]+ 340.2635, found 340.2615.
000 cells per well/100 μL of media) into 96-well plates. After 24 h, the cells were treated with the given compounds and placed in an incubator for 48 h. MTT dye was added to the plates 4 h prior to the experiment termination at a concentration of 2.5 mg mL−1, dissolved in media. MTT formazon crystals formed were dissolved in DMSO and the absorbance at 570 nm was recorded.
000 × g for 15 min at 4 °C. After that, the supernatant was collected and then subjected to western blot analysis.Footnotes |
| † IIIM communication no. 1907/2016. |
| ‡ Electronic supplementary information (ESI) available: Spectroscopic data of the compounds (NMR, HRMS) associated with this article can be found, in the online version. See DOI: 10.1039/c6ra23757f |
| § Current address: Indian Pharmacopoeia Commission,Ghaziabad-201002, India |
| This journal is © The Royal Society of Chemistry 2016 |