Mn(III)-mediated regioselective synthesis of (E)-vinyl sulfones from sodium sulfinates and nitro-olefins

Gang Nie, Xiaocong Deng, Xue Lei, Qinquan Hu and Yunfeng Chen*
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China. E-mail: yfchen@wit.edu.cn

Received 13th July 2016 , Accepted 5th August 2016

First published on 5th August 2016


Abstract

An efficient Mn(III)-mediated coupling reaction of sodium sulfinates with nitro-olefins has been developed, this reaction proceeds in mild and open-flask conditions to afford (E)-vinyl sulfones with high regioselectivities and in good to excellent yields. The control experiments revealed that this transformation could involve a radical process.


Vinyl sulfones are important structural synthons in synthetic organic chemistry, which are good Michael acceptors and also easy to participate in cycloaddition reactions.1 Nowadays, its derivatives have also shown wide ranging biological and pharmacological activities.2 So far, many conventional approaches for the synthesis of vinyl sulfones have been established, including the oxidation of the corresponding sulfides,3 β-elimination of selenosulfones and halosulfones,4 and addition of sulfonyl chloride to alkynes/alkenes.5 In recent years, sodium sulfinate and sulfonyl hydrazine have been utilized to react with different partners for synthesis of vinyl sulfones, probably due to their good stability and ease of handling.6 The direct addition of sodium sulfinates to terminal aromatic alkynes7 and propiolic acid8 in the presence of Cu or Pd catalysts could give vinyl sulfones with high yields and regioselectivities. At the same time, alkenes are also good reaction partners to produce vinyl sulfones via oxidative coupling reactions with sodium sulfinates (Scheme 1).9 For instance, Nair's group reported one-pot synthesis of vinyl sulfones via CAN-mediated reaction of aryl sulfinates and alkenes.9a Lately, KI/PhI(OAc)2 (ref. 9b), KI/NaIO4,9c KI/TBHP9d together with stoichiometric I2 (ref. 9e) and other methods9k–m have also been developed by different groups. The cinnamic acids can undergo decarboxylation in many reaction systems.10 Guo's group designed a copper-catalyzed aerobic oxidative decarboxylative sulfonylation reaction to synthesize vinyl sulfones by using cinnamic acids and sodium sulfinates as the starting materials.10c Interestingly, Jiang and co-workers revealed a transition metal-free base-promoted variant, which made this transformation greener.10d Nitro-olefins are relatively stable, simple to be obtained by Henry reaction from aldehyde and nitromethane, which have been widely used to synthesize useful organic molecules. In some cases, the nitro-olefins are equivalent to alkyne synthon by the elimination of HNO2 or an oxidative dehydrogenation process. For example, nitro-olefins are good partners for the synthesis of NH-1,2,3-triazoles and NO2-substituted 1,2,3-triazoles.11
image file: c6ra17842a-s1.tif
Scheme 1 Synthesis of vinyl sulfones from sodium sulfinates and alkenes.

In fact, Yadav's group reported a silver-catalyzed coupling reaction of nitro-olefins and sodium sulfinates in the presence of oxidant and under nitrogen atmosphere.12 Encouraged by this work, we wanted to develop other methods, especially cheaper metal salts and simpler operation to make this transformation more applicable. Herein, we reported an efficient synthesis of (E)-vinyl sulfones by Mn(III)-mediated coupling reaction of nitro-olefins with sodium sulfinates under air.

Our studies began by examining the reaction between nitro-olefin (1a) and sodium benzenesulfinate (2a) in the presence of a stoichiomertic I2 in DMF at room temperature under air (Table 1, entry 1), the corresponding product 3a was not observed at all, and KI/TBHP system gave the same result too (entry 2). However, TBHP, DTBP and K2S2O8 could promote this reaction despite low yields (entries 3–5). Then, other metal salts oxidants such as Fe(NO3)3, FeCl3, Mn(OAc)3, and CuSO4 were tested, Mn(OAc)3 showed superior reactivity towards this coupling reaction and the yield of 3a increased to 38% (entries 6–9). By contrast with Yadav's protocol, AgNO3 was also introduced into this reaction, but the product 3a was not observed at all, AgNO3/K2S2O8 system also gave the same result (entries 10 and 11), which revealed that the silver salt system could not work in this case. To further improve the yield of 3a, different reaction temperatures were set, the yield of the expected product 3a increased to 92% when the reaction temperature reached up to 100 °C (entries 12–16). Attempts to reduce the amount of Mn(OAc)3 failed, and Mn(OAc)3/K2S2O8 system gave inferior result (entries 17–19). Meanwhile, various solvents were examined, which indicated that the reaction performed in DMF was significantly better than those in toluene, AcOH, EtOH, DMSO or H2O (entries 20–24). Under argon atmosphere, the yield of 3a was similar to the open flask condition (entry 25).

Table 1 Optimization of the reaction conditionsa

image file: c6ra17842a-u1.tif

Entry Oxidant Oxidant (equiv.) Solvent Temp (°C) Yieldc (%)
a Reaction conditions: nitro-benzeneolefin (1a) (0.3 mmol), sodium benzenesulfinate (2a) (2 equiv., 0.6 mmol), solvent (5 mL), 8 h, air.b nd, not detected.c Isolated yield.d Argon atmosphere.
1 I2 2.5 DMF rt Trace
2 KI/TBHP 0.2/2.5 DMF rt Trace
3 TBHP 2.5 DMF rt 16
4 DTBP 2.5 DMF rt 19
5 K2S2O8 2.5 DMF rt 14
6 Fe(NO3)3 2.5 DMF rt 17
7 FeCl3 2.5 DMF rt 13
8 CuSO4 2.5 DMF rt Trace
9 Mn(OAc)3 2.5 DMF rt 38
10 AgNO3 2.5 DMF rt ndb
11 AgNO3/K2S2O8 0.2/2.5 DMF rt nd
12 Mn(OAc)3 3 DMF rt 46
13 Mn(OAc)3 3 DMF 40 59
14 Mn(OAc)3 3 DMF 60 65
15 Mn(OAc)3 3 DMF 80 77
16 Mn(OAc)3 3 DMF 100 92
17 Mn(OAc)3 0.2 DMF 100 33
18 Mn(OAc)3 2 DMF 100 84
19 Mn(OAc)3/K2S2O8 0.2/3 DMF 100 56
20 Mn(OAc)3 3 Toluene 100 nd
21 Mn(OAc)3 3 AcOH 100 47
22 Mn(OAc)3 3 EtOH 100 14
23 Mn(OAc)3 3 DMSO 100 45
24 Mn(OAc)3 3 H2O 100 37
25d Mn(OAc)3 3 DMF 100 90


With the optimized protocol in hand, we further examined the scope and limitation of this coupling reaction between different nitro-olefins and sodium sulfinates, and the results are summarized in Table 2. Nitro-olefins with electron-donating functional group such as OMe, Me have higher yield than those with electron-drawing group such as Cl, Br. For instance, nitro-olefins with electron-donating functional group gave the corresponding product in 86–93% yields (3a–c, 3i–k, 3m–o, 3u–3v, 3w). Instead, nitro-olefins with electron-drawing group gave 73–81% yields of the products (3d–e, 3h, 3l, 3p–q). It is noteworthy that sodium sulfinates with electron-donating groups and withdrawing groups have no significant influence on the transformation (3v, 3t). Furthermore, acid-sensitive furanyl-substituted nitro-olefin was also suitable substrate to react with sodium sulfinate, the furanyl-substituted vinyl sulfone (3s) was obtained in 41% isolated yield. Unfortunately, nitro-olefins with NO2 group couldn't give the corresponding products (3x–z).13

Table 2 Substrate scope for the synthesis of various vinyl sulfonesa

image file: c6ra17842a-u2.tif

a Reaction conditions: nitroolefins (0.3 mmol), sodium sulfinates (0.6 mmol, 2 equiv.), Mn(OAc)3 (0.9 mmol, 3 equiv.), DMF (5 mL), 100 °C, air.b Isolated yield.
image file: c6ra17842a-u3.tif


To gain insights into mechanism of the reaction, nitro-olefin (1a) and sodium benzenesulfinate (2a) reacted in the presence of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO, 3 eq.) which is a radical scavenger under standard condition (Scheme 2). However, 3a was no detected, which implied that this reaction could involve a radical process. Under oxygen atmosphere, the reaction only gave the desired product 3a, while assumed oxidative product 4a was not detected, which showed that Mn(III) could not promote a metal-catalyzed oxidization process.14


image file: c6ra17842a-s2.tif
Scheme 2 Control experiments.

Furthermore, in order to reveal the role of the nitro group in this reaction, we reconsidered the reaction between styrene and sodium sulfinates, most of which need I2 or I/oxidants, and Lei disclosed that I2 system involve a HI elimination similar to the β-hydride elimination of transition metals process to achieve alkenylation for the formation of vinyl sulfones.9h Then the reactions between styrene and sodium sulfinates in the presence of Mn(OAc)3 were investigated. Under our standard condition, the reaction between styrene (5) and sodium sulfinates in the presence of three equivalent or catalytic amount of Mn(OAc)3 induce the 100% conversion of styrene, however, the desired vinyl sulfone 3a was detected in less than 10% yield, most of styrene was polymerized. This result showed that Mn(III) could not react with the carbon radical, the successively β-hydride elimination process didn't exist. By contrast, a potential elimination of nitro radical should be involved during the coupling of nitro-olefins with sodium sulfinates.

On the basis of the results described above and previous literature reports,12,15 a plausible mechanism was proposed in Scheme 3. Firstly, a radical A was initially formed through the oxidation of sodium sulfinate by Mn(III) under heating. Next, intermediate B was generated through the trans-addition of A to the nitro-olefin. Then, intermediate B eliminated a nitro radical to give product C. The nitro radical may be quenched by other radical species or Mn(OAc)3, that's the reason why too much excess amount of Mn(OAc)3 was needed.


image file: c6ra17842a-s3.tif
Scheme 3 A plausible mechanism.

In summary, we have developed an efficient Mn(III)-mediated synthesis of (E)-vinyl sulfones through coupling reactions of sodium sulfinates with nitro-olefins. The synthetic method presented many advantages such as cheap metal, simple operation, easily available substrate, and good yields, which is promising for practical applications in relevant industry and manufacture in the future.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21002076), the Scientific Research Foundation for the Returned Overseas Chinese Scholars for financial support. We also thank No. CX2015151, supported by Graduate Innovative Fund of Wuhan Institute of Technology.

Notes and references

  1. (a) A. K. Musser and P. L. Fuchs, J. Org. Chem., 1982, 47, 3121 CrossRef CAS; (b) R. V. C. Carr, R. V. Williams and L. A. Paquette, J. Org. Chem., 1983, 48, 4976 CrossRef CAS; (c) W. A. Kinney, G. D. Crouse and L. A. Paquette, J. Org. Chem., 1983, 48, 4986 CrossRef CAS; (d) T. Llamas, R. G. Arrayas and J. C. Carretero, Org. Lett., 2006, 8, 1795 CrossRef CAS PubMed; (e) G. Liang, M. C. Tong and C. J. Wang, Adv. Synth. Catal., 2009, 351, 3101 CrossRef CAS; (f) S. Dey, D. Datta and T. Pathak, Synlett, 2011, 2521 CAS; (g) D. Sahu, S. Dey, T. Pathak and B. Ganguly, Org. Lett., 2014, 16, 2100 CrossRef CAS PubMed; (h) J. R. Bull and K. Bischofberger, J. Chem. Soc., Perkin Trans. 1, 1991, 2859 RSC; (i) T. Llamas, R. G. Arrayas and J. C. Carretero, Synthesis, 2007, 950 CAS; (j) J. K. Laha, Chem. Nat. Compd., 2010, 46, 254 CrossRef CAS; (k) J. Yang, W. Yin, R. Liu and C. Chu, Chin. J. Chem., 2012, 30, 2786 CrossRef CAS; (l) M. I. Pleshchev, V. V. Kachala, A. S. Goloveshkin, I. S. Bushmarinov, V. V. Kuznetsov, D. V. Khakimov and N. N. Makhova, Mendeleev Commun., 2013, 23, 271 CrossRef CAS; (m) V. A. Vasin, V. V. Razin, E. V. Bezrukova, D. Y. Korovin, P. S. Petrov and N. V. Somov, Russ. J. Org. Chem., 2015, 51, 1144 CrossRef CAS.
  2. (a) S. Liu and R. P. Hanzlik, J. Med. Chem., 1992, 35, 1067 CrossRef CAS PubMed; (b) J. T. Palmer, D. Rasnick, J. L. Klaus and D. Brömme, J. Med. Chem., 1995, 38, 3193 CrossRef CAS PubMed; (c) W. R. Roush, S. L. Gwaltney II, J. Cheng, K. A. Scheidt, J. H. McKerrow and E. Hansell, J. Am. Chem. Soc., 1998, 120, 10994 CrossRef CAS; (d) J. J. Reddick, J. Cheng and W. R. Roush, Org. Lett., 2003, 5, 1967 CrossRef CAS PubMed; (e) G. Wang, U. Mahesh, G. Y. J. Chen and S. Yao, Org. Lett., 2003, 5, 737 CrossRef CAS PubMed; (f) B. R. Shenai, B. J. Lee, A. Alvarez-Hernandez, P. Y. Chong, C. D. Emal, R. J. Neitz, W. R. Roush and P. J. Rosenthal, Antimicrob. Agents Chemother., 2003, 47, 154 CrossRef CAS PubMed; (g) B. A. Frankel, M. Bentley, R. G. Kruger and D. G. McCafferty, J. Am. Chem. Soc., 2004, 126, 3404 CrossRef CAS PubMed; (h) D. C. Meadows, T. Sanchez, N. Neamati, T. W. North and J. Gervay-Hague, Bioorg. Med. Chem., 2007, 15, 1127 CrossRef CAS PubMed; (i) M. Uttamchandani, K. Liu, R. C. Panicker and S. Yao, Chem. Commun., 2007, 1518 RSC; (j) K. Steert, I. El-Sayed, P. Vander Veken, A. Krishtal, C. Van Alsenoy, G. D. Westrop, J. C. Mottram, G. H. Coombs, K. Augustyns and A. Haemers, Bioorg. Med. Chem. Lett., 2007, 17, 6563 CrossRef CAS PubMed; (k) R. Ettari, E. Nizi, M. E. D. Francesco, M.-A. Dude, G. Pradel, R. Vičík, T. Schirmeister, N. Micale, S. Grasso and M. Zappalà, J. Med. Chem., 2008, 51, 988 CrossRef CAS PubMed; (l) S. Y. Woo, J. H. Kim, M. K. Moon, S.-H. Han, S. K. Yeon, J. W. Choi, B. K. Jang, H. J. Song, Y. G. Kang, J. W. Kim, J. Lee, D. J. Kim, O. Hwang and K. D. Park, J. Med. Chem., 2014, 57, 1473 CrossRef CAS PubMed.
  3. (a) A. A. Lindeén, L. Krüger and J. Bäckvall, J. Org. Chem., 2003, 68, 5890 CrossRef PubMed; (b) F. G. Gelalcha and B. Schulze, J. Org. Chem., 2002, 67, 8400 CrossRef CAS PubMed; (c) M. Matteucci, G. Bhalay and M. Bradley, Org. Lett., 2003, 5, 235 CrossRef CAS PubMed.
  4. (a) J. Sinnreich and M. Asscher, J. Chem. Soc., Perkin Trans. 1, 1972, 1543 RSC; (b) P. B. Hopkins and P. L. Fuchs, J. Org. Chem., 1978, 43, 1208 CrossRef CAS; (c) R. V. C. Carr, R. V. Williams and L. A. Paquette, J. Org. Chem., 1983, 48, 4976 CrossRef CAS; (d) F. E. K. Kroll, R. Morphy, D. Rees and D. Gani, Tetrahedron Lett., 1997, 38, 8573 CrossRef CAS.
  5. (a) L. M. Harwood, M. Julia and G. Le Thuillier, Tetrahedron, 1980, 36, 2483 CrossRef CAS; (b) S. Zhu, C. Qin, G. Xu and Q. Chu, Tetrahedron Lett., 1998, 39, 5265 CrossRef CAS; (c) T. G. Back and S. Collins, J. Org. Chem., 1981, 46, 3249 CrossRef CAS; (d) V. Nair, A. Augustine, S. B. Panicker, T. D. Suja and S. Mathai, Res. Chem. Intermed., 2003, 29, 213 CrossRef CAS; (e) H. Qian and X. Huang, Synlett, 2001, 1913 CrossRef CAS.
  6. (a) X. Li, X. Xu and C. Zhou, Chem. Commun., 2012, 48, 12240 RSC; (b) X. Q. Li, X. Shi, M. Fang and X. Xu, J. Org. Chem., 2013, 78, 9499 CrossRef CAS PubMed; (c) X. Li, Y. Xu, W. Wu, C. Jiang, C. Qi and H. Jiang, Chem.–Eur. J., 2014, 20, 7911 CrossRef CAS PubMed; (d) G. Rong, J. Mao, H. Yan, Y. Zheng and G. Zhang, J. Org. Chem., 2015, 80, 4697 CrossRef CAS PubMed; (e) S. Li, X. Li, F. Yang and Y. Wu, Org. Chem. Front., 2015, 2, 1076 RSC.
  7. (a) G. M. Shelke, V. K. Rao, K. Pericherla and A. Kumar, Synlett, 2014, 25, 2345 CrossRef CAS; (b) Y. Xu, J. Zhao, X. Tang, W. Wu and H. Jiang, Adv. Synth. Catal., 2014, 356, 2029 CrossRef CAS; (c) N. Taniguchi, Synlett, 2012, 23, 1245 CrossRef CAS; (d) N. Taniguchi, Tetrahedron, 2014, 70, 1984 CrossRef CAS; (e) W. Wei, J. Li, D. Yang, J. Wen, Y. Jiao, J. You and H. Wang, Org. Biomol. Chem., 2014, 12, 1861 RSC; (f) Q. Xue, Z. Mao, Y. Shi, H. Mao, Y. Cheng and C. Zhu, Tetrahedron Lett., 2012, 53, 1851 CrossRef CAS; (g) J. L. G. Ruano, J. Alemán and C. G. Paredes, Org. Lett., 2006, 8, 2683 CrossRef CAS PubMed.
  8. (a) G. Rong, J. Mao, H. Yan, Y. Zheng and G. Zhang, J. Org. Chem., 2015, 80, 7652 CrossRef CAS PubMed; (b) J. Meesin, P. Katrun, V. Reutrakul, M. Pohmakotr, D. Soorukram and C. Kuhakarn, Tetrahedron, 2016, 72, 1440 CrossRef CAS.
  9. (a) V. Nair, A. Augustine, T. G. George and L. G. Nair, Tetrahedron Lett., 2001, 42, 6763 CrossRef CAS; (b) P. Katrun, S. Chiampanichayakul, K. Korworapan, M. Pohmakotr, V. Reutrakul, T. Jaipetch and C. Kuhakarn, Eur. J. Org. Chem., 2010, 5633 CrossRef CAS; (c) N. Kamigata, H. Sawada and M. Kobayashi, J. Org. Chem., 1983, 48, 3793 CrossRef CAS; (d) N. Taniguchi, Synlett, 2011, 1308 CrossRef CAS; (e) V. Nair, A. Augustine and T. D. Suja, Synthesis, 2002, 2259 CrossRef CAS; (f) B. Das, M. Lingaiah, K. Damodar and N. Bhunia, Synthesis, 2011, 2941 CrossRef CAS; (g) T. Sawangphon, P. Katrun, K. Chaisiwamongkhol, M. Pohmakotr, V. Reutrakul, T. Jaipetch, D. Soorukram and C. Kuhakarn, Synth. Commun., 2013, 43, 1692 CrossRef CAS; (h) S. Tang, Y. Wu, W. Liao, R. Bai, C. Liu and A. Lei, Chem. Commun., 2014, 50, 4496 RSC; (i) N. Zhang, D. Yang, W. Wei, L. Yuan, Y. Cao and H. Wang, RSC. Adv., 2015, 5, 37013 RSC; (j) Y.-C. Luo, X.-J. Pan and G.-Q. Yuan, Tetrahedron, 2015, 71, 2119 CrossRef CAS; (k) Q. Xue, Z. Mao, Y. Shi, H. Mao, Y. Cheng and C. Zhu, Tetrahedron Lett., 2012, 53, 1851 CrossRef CAS; (l) R. Chawla, R. Kapoor, A. K. Singh and L. D. S. Yadav, Green Chem., 2012, 14, 1308 RSC; (m) S. Liang, R.-Y. Zhang, G. Wang, S.-Y. Chen and X.-Q. Yu, Eur. J. Org. Chem., 2013, 7050 CrossRef CAS.
  10. (a) R. Guo, Q. Gui, D. Wang and Z. Tan, Catal. Lett., 2014, 144, 1377 CrossRef CAS; (b) B. V. Rokade and K. R. Prabhu, J. Org. Chem., 2014, 79, 8110 CrossRef CAS PubMed; (c) Q. Jiang, B. Xu, A. Zhao, Y. Zhao, Y. Li, N. He and C. Guo, J. Org. Chem., 2014, 79, 7372 CrossRef CAS PubMed; (d) Y. Xu, X. Tang, W. Hu, W. Wu and H. Jiang, Green Chem., 2014, 16, 3720 RSC; (e) P. Katrun, S. Hlekhlai, J. Meesin, M. Pohmakotr, V. Reutrakul, T. Jaipetch, D. Soorukram and C. Kuhakarn, Org. Biomol. Chem., 2015, 13, 4785 RSC; (f) H. Li and G. Liu, J. Org. Chem., 2014, 79, 509 CrossRef CAS PubMed; (g) J. Chen, J. Mao, Y. Zheng, D. Liu, G. Rong, H. Yan, C. Zhang and D. Shi, Tetrahedron, 2015, 71, 5059 CrossRef CAS; (h) J. Gao, J. Lai and G. Yuan, RSC. Adv., 2015, 5, 66723 RSC.
  11. For selected examples, see: (a) S. Sengupta, H. Duan, W. Lu, J. L. Petersen and X. Shi, Org. Lett., 2008, 10, 1493 CrossRef CAS PubMed; (b) B. Quiclet-Sire and S. Z. Zard, Synthesis, 2005, 3319 CrossRef CAS; (c) X.-J. Quan, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Org. Lett., 2014, 16, 5728 CrossRef CAS PubMed; (d) Y. Chen, G. Nie, Q. Zhang, S. Ma, H. Li and Q. Hu, Org. Lett., 2015, 17, 1118 CrossRef CAS PubMed; (e) Q. Hu, Y. Liu, X. Deng, Y. Li and Y. Chen, Adv. Synth. Catal., 2016, 358, 1689 CrossRef CAS.
  12. T. Keshari, R. Kapoorr and L. D. S. Yadav, Eur. J. Org. Chem., 2016, 2695 CrossRef CAS.
  13. For some examples, see: (a) H. Tian, A. Cao, L. Qiao, A. Yu, J. Chang and Y. Wu, Tetrahedron, 2014, 70, 9107 CrossRef CAS; (b) W. Zhang, J. Xie, B. Rao and M. Luo, J. Org. Chem., 2015, 80, 3504 CrossRef CAS PubMed; (c) F. Zhao, B. Li, H. Huang and G.-J. Deng, RSC. Adv., 2016, 6, 13010 RSC.
  14. (a) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang and A. Lei, J. Am. Chem. Soc., 2013, 135, 11481 CrossRef CAS PubMed; (b) W. Wei, C. Liu, D. Yang, J. Wen, J. You, Y. Suo and H. Wang, Chem. Commun., 2013, 49, 10239 RSC; (c) R. Chawla, A. K. Singh and L. D. S. Yadav, Eur. J. Org. Chem., 2014, 2032 CrossRef CAS; (d) A. K. Singh, R. Chawla and L. D. S. Yadav, Tetrahedron Lett., 2014, 55, 4742 CrossRef CAS; (e) W. Wei, J. Wen, D. Yang, M. Wu, J. You and H. Wang, Org. Biomol. Chem., 2014, 12, 7678 RSC; (f) B. Sreedhar and V. Rawat, Synlett, 2012, 413 CrossRef CAS; (g) A. K. Singh, R. Chawla and L. D. S. Yadav, Tetrahedron Lett., 2014, 55, 2845 CrossRef CAS; (h) N. Samakkanad, P. Katrun, T. Techajaroonjit, S. Hlekhlai, M. Pohmakotr, V. Reutrakul, T. Jaipetch, D. Soorukram and C. Kuhakarn, Synthesis, 2012, 44, 1693 CrossRef CAS.
  15. For some Mn(III)-assisted radical reactions, see: (a) X.-J. Mu, J.-P. Zou, Q.-F. Qian and W. Zhang, Org. Lett., 2006, 8, 5291 CrossRef CAS PubMed; (b) W. Xu, J.-P. Zou and W. Zhang, Tetrahedron Lett., 2010, 51, 2639 CrossRef CAS; (c) J.-F. Xue, S.-F. Zhou, Y.-Y. Liu, X. Pan, J.-P. Zou and O. T. Asekun, Org. Biomol. Chem., 2015, 13, 4896 RSC; (d) L. Li, J.-J. Wang and G.-W. Wang, J. Org. Chem., 2016, 81, 5433 CrossRef CAS PubMed; (e) T. Kagayama, A. Nakano, S. Sakaguchi and Y. Ishii, Org. Lett., 2006, 8, 407 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra17842a

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.