New clathrates of Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3)

Hui Zhang*ab, Gang Muab, Fuqiang Huangcb and Xiaoming Xieab
aState Key Laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. E-mail: huizhangmpg@hotmail.com
bCAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
cState Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received 6th June 2016 , Accepted 4th August 2016

First published on 5th August 2016


Abstract

New Tl type-I clathrates of K7.62(1)Tl0.38(1)Ge45.34(3) and Rb7.50(1)Tl0.50(1)Ge46 were synthesized via solid-state reaction. Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3) were found to crystallize in space groups Pm[3 with combining macron]n and Ia[3 with combining macron]d with lattice parameters of a = 10.81559(7) Å and a = 21.4290(2) Å, respectively. Theoretical calculations indicated metallic features based on the calculation models of Rb7Tl1Ge46 and K7Tl1Ge46 in the space group of Pm[3 with combining macron]. The densities of states at the Fermi level were predominantly determined by the Ge s and Ge p orbitals of Rb7Tl1Ge46 and K7Tl1Ge46.


Introduction

Clathrate compounds are composed of host frameworks that embrace guest species in polyhedral cages. The first representatives were hydrates of various gases and liquids.1 The discovery of sodium silicide Na8Si46 and NaxSi136 started the era of intermetallic and semiconducting clathrates.2–13 Interest in clathrates had grown rapidly due to development of the “phonon glass-electron crystal” concept,14 according to which clathrates are promising thermoelectric materials. Furthermore, some clathrates demonstrated a high thermoelectric figure of merit ZT, e.g. Ba8Ge30Ga16 (ref. 15) with ZT = 1.3 at 800 K and Ba8Au5.3Ge40.7 (ref. 16) with ZT = 0.92 at 600 K. Besides thermoelectric properties, superconductivity and ferromagnetism were revealed for clathrates in Ba8−xSi46,17 Eu8Ga16Ge30 (ref. 18) and Ba8Mn2Ge44.19 Binary, ternary and quaternary clathrates with various structure types have been synthesized.1–37 To date type-I clathrates,1,2,4–11,14–17,19–27 type-II clathrates,3,12,13,28–32 type-III clathrates,33,34 type-VIII clathrates,35,36 type-IX clathrates18 and type-X clathrates37 have been discovered.

The majority of clathrates belong to the type-I structure type, and most type-I clathrates crystallize in the cubic space group Pm[3 with combining macron]n.20–22 The crystal structure feature a three-dimensional host framework, based on the group 14 elements Si, Ge and Sn, encapsulating guest atoms in large cavities. Strong covalent bonds exist within the framework, whereas the guest atoms are held within the framework cavities by weaker interactions. In polar clathrates electron balance between host and guest substructures obey the Zintl rules.38 It implies that electronegative atoms accepted electrons from more electropositive atoms to complete the 8-electron shell.

The clathrates based on alkaline metal Si/Ge2–8,12,13 were synthesized previously by thermal decomposition the binary AM (A = alkali metal, M = Si/Ge) compounds. Later binary tin based clathrates9–11 and ternary clathrates25–49 were prepared via solid-state reactions from the constituent elements. We have successfully prepared alkaline metal and thallium clathrate-II Cs8Na16−xTlxGe136 via solid-state reaction.30 Herein the synthesis and structure of thallium clathrate-I Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3) are reported.

Experimental

Synthetic procedure

The starting materials were high-purity elemental Rb, K, Tl and Ge. The assumed compositions of Rb6Tl2Ge44 and K6Tl2Ge44 were determined according to a clathrate-I containing 184 electrons per unit cell. Circa 1 gram of determined stoichiometric ratios of the mixed raw materials were loaded into Ta tubes. The containers were sealed by welding in an argon-filled glovebox [c(O2) and c(H2O) ≤ 1 ppm]. The Ta tubes were then taken out of the glovebox and put into quartz ampoules. The quartz tubes were sealed in a vacuum atmosphere, then heated at 650 °C for 2 weeks. The containers were then opened in air. The products were washed with distilled water and acetone then dried at 80 °C for 12 h in air.

Morphology and composition

The appropriately prepared metallographic specimens were investigated on a Philips XL 30 scanning electron microscope equipped with a LaB6 cathode. The chemical composition was determined by energy dispersive X-ray spectroscopy (EDXS; EDXS Genesis Software V4.61) using a Si (Li) detector attached to the scanning electron microscope. Compositions were calculated from the background-corrected intensities of the X-ray lines Rb L, K K, Tl L and Ge K, which were excited by the electron beam at a 25 kV acceleration voltage. A standardless method with ZAF-matrix corrections was used.

Powder X-ray diffraction

The powder XRD patterns were collected using Guinier technique (Huber Image Plate Camera G670, Cu Kα1 radiation, λ = 1.54056 Å, 3.0° < 2θ < 100.3°, step width 0.005°). The structures were resolved from powder XRD data by means of least-squares technique using the WinCSD program.50 For structure presentation the program Diamond 3.0 was used.51

Theoretical calculation

First-principle calculations were carried out by means of density functional theory using the pseudo-potential as implemented in the VASP code.52 The exchange-correlation potential was calculated using the generalized gradient approximation (GGA) as proposed by Perdew Burke Ernzerhof.53 The calculation accuracy was 10−5 eV using a 280 eV cut-off in the plane wave expansion and a 2 × 2 × 2 Monkhorst–Pack k grid on the simplified structure models of Rb7Tl1Ge46 and K7Tl1Ge45. Rb7Tl1Ge46 structure model was obtained by first revision the crystallographic information file to get ordered file through changing the occupancy Tl1 to 1 to obtain Rb6Tl2Ge46. Next the ordered model Rb6Tl2Ge46 was input. Its symmetry was set to P1 then one Tl1 atom was changed to Rb1. A new symmetry of Pm[3 with combining macron] was found and the calculation model Rb7Tl1Ge46 in Pm[3 with combining macron] was obtained. K7.62(1)Tl0.38(1)Ge45.34(3) in space group of Ia[3 with combining macron]d was a 2 × 2 × 2 times superstructure of Rb7.50(1)Tl0.50(1)Ge46. For simplicity we used crystallographic information file of Rb7.50(1)Tl0.50(1)Ge46 as the original model of K7.62(1)Tl0.38(1)Ge45.34(3) by changing the lattice parameter to 10.7145(1) Å in space group Pm[3 with combining macron]n, setting Rb1 and Rb2 to Tl1 and K2 with complete occupancy to obtain ordered K6Tl2Ge46. K6Tl2Ge46 was imported. Its symmetry was set to P1, then one Tl1 was changed to K1. A new symmetry of Pm[3 with combining macron] was found and the calculation model of K7Tl1Ge46 was obtained. The ordered input files of Rb6Tl2Ge46 and K6Tl2Ge46 together with the calculation models of Rb7Tl1Ge46 and K7Tl1Ge46 as well as their structure figures were given as ESI.

Results and discussion

Morphology and composition

The synthesized samples of Rb7.50(1)Tl0.50(1)Ge46 (inset of Fig. 1 top) and K7.62(1)Tl0.38(1)Ge45.34(3) (inset of Fig. 1 bottom) samples were grey particles of 100–200 μm and had distinct facets. The elemental compositions were confirmed by EDX analysis as K7.6(5)Tl1.5(1)Ge45.0(4) and Rb7.0(2)Tl1.7(5)Ge45.03(8) with large standard errors. The final compositions of K7.62(1)Tl0.38(1)Ge45.34(3) and Rb7.50(1)Tl0.50(1)Ge46 were determined by structural refinement based on powder XRD data.
image file: c6ra14614g-f1.tif
Fig. 1 Full profile simulated XRD patterns of Rb7.50(1)Tl0.50(1)Ge46 (refined with Ge impurity) (top) and K7.62(1)Tl0.38(1)Ge45.34(3) (bottom), inset of which are their corresponding SEM images.

X-ray powder diffraction

The peak searching, indexing and structural refinement were performed on powder XRD data using WinCSD software.50 The indexed X-ray powder diffraction data indicated Rb7.50(1)Tl0.50(1)Ge46 was a type-I clathrate in space group Pm[3 with combining macron]n with unit cell parameter of a = 10.81559(7) Å and Ge impurity was observed. K7.62(1)Tl0.38(1)Ge45.34(3) was indexed using a 2 × 2 × 2 times superstructure in space group Ia[3 with combining macron]d with lattice parameters of a = 21.4290(2) Å.

Structure refinement

The full profile simulated X-ray powder diffraction patterns of Rb7.50(1)Tl0.50(1)Ge46 (top) and K7.62(1)Tl0.38(1)Ge45.34(3) (bottom) were given in Fig. 1 with experimental data in red circles, simulated curves in black lines, brag sites in black bars and difference curves in black lines. Weak impurity peaks appeared in Rb7.50(1)Tl0.50(1)Ge46 (top) and K7.62(1)Tl0.38(1)Ge45.34(3) (bottom), which belonged to Tl rich mixtures in Tl–Ge–Rb/K system according to SEM images and EDX analysis.

The structures of Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3) were resolved by direct method using the WinCSD program. During the refinement procedures for Rb7.50(1)Tl0.50(1)Ge46 the three framework atom sites of 6c, 16i, and 24k were set as Ge1, Ge2 and Ge3, the guest atom sites at the 2a and 6d sites were set as Rb1 and Rb2 in a typical clathrate-I structure. The displace parameter for Rb1 (at 2a) was found too low. The subsequent refined occupancy indicated possible heavier atom in this site. Finally Rb1 was refined with Tl1 together. The structure refinement yielded complete occupancies for Ge1, Ge2, Ge3 and Rb2 in Rb7.50(1)Tl0.50(1)Ge46.

K7.62(1)Tl0.38(1)Ge45.34(3) crystallized in a 2 × 2 × 2 times superstructure in Ia[3 with combining macron]d space group. During the refinement procedures for K7.62(1)Tl0.38(1)Ge45.34(3) the six framework atom sites of 24c, 24d, 32e and three 96h were set as Ge1, Ge2, Ge3, Ge4, Ge5 and Ge6, the guest atom sites at the 16a and 48g sites were set as K1 and K2. The displacement parameter for K1 was found too low. The refined occupancy indicated possible heavier atom in this position. Subsequently K1 site was refined with Tl1. The displacement parameters for Ge1 (at 24c) and Ge2 (at 24d) were higher than that of other Ge sites. The subsequent refinement indicated partial vacancies at Ge1 and Ge2 sites. The refinement yielded complete occupancies for Ge3, Ge4, Ge5, Ge6 and K2.

The final atomic coordinates, site occupancies, isotropic atomic displacement parameters and R factors for Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3) were listed in Table 1. The selected bond distances and angles of Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3) were given in Table 2 as ESI materials.

Table 1 Atomic coordinates and equivalent isotropic displacement parameters (Å2) for Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3)
Atom Site x y z Uiso Occ.
Rb7.50(1)Tl0.50(1)Ge46 a = 10.81559(7) Å R = 9.33 Pm[3 with combining macron]n    
Rb1/Tl1 2a 0 0 0 0.00319(3) 0.750(4)/0.250(4)
Rb2 6d 1/4 0 1/2 0.02164(3) 1
Ge1 6c 1/4 1/2 0 0.00354(3) 1
Ge2 16i 0.18341(8) x x 0.01537(3) 1
Ge3 24k 0 0.1194(1) 0.3070(1) 0.01988(3) 1
[thin space (1/6-em)]
K7.62(1)Tl0.38(1)Ge45.34(3) a = 21.4290(2) Å R = 11.4 Ia[3 with combining macron]d    
K1/Tl1 16a 0 0 0 0.02774(8) 0.810(6)/0.190(6)
K2 48g 1/8 0.2380(2) 0.0119(2) 0.00859(8) 1
Ge1 24c 1/8 0 1/4 0.01592(8) 0.90(1)
Ge2 24d 3/8 0 1/4 0.02788(8) 0.88(1)
Ge3 32e 0.0948(2) 0.0948(2) 0.0948(2) 0.01742(8) 1
Ge4 96h 0.1569(2) 0.3445(2) 0.1667(1) 0.01051(8) 1
Ge5 96h 0.0914(1) 0.2512(2) 0.1899(2) 0.00938(8) 1
Ge6 96h 0.0948(1) 0.2432(2) 0.3103(2) 0.00740(8) 1


Table 2 Selected bond distances and angles (Å, °) of Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3)
Rb7.50(1)Tl0.50(1)Ge46
Rb1–8Ge2 3.4360 (9) Rb2–Ge3 4.162 (1) Ge3–Ge1–Ge3 111.82 (4) Ge2–Ge3–Ge2 105.59 (5)
Rb1–12Ge3 3.563 (1) Ge1–Ge3 2.520 (1) Ge3–Ge1–Ge3 108.31 (4) Ge2–Ge3–Ge1 106.80 (4)
Rb2–12Ge3 3.6514 (8) Ge2–Ge3 2.4902 (7) Ge3–Ge2–Ge3 110.84 (5) Ge2–Ge3–Ge3 106.13 (5)
Rb2–4Ge1 3.8239 (1) Ge2–Ge2 2.495 (1) Ge3–Ge2–Ge2 108.07 (5) Ge1–Ge3–Ge3 124.09 (5)
Rb2–8Ge2 4.0222 (2) Ge3–Ge3 2.584 (2)        
[thin space (1/6-em)]
K7.62(1)Tl0.38(1)Ge45.34(3)
K1–6Ge4 3.357 (3) K2–Ge4 3.983 (5) Ge5–Ge6 2.589 (4) Ge5–Ge4–Ge4 105.01 (14)
K1–2Ge3 3.521 (3) K2–3Ge4 4.083 (5) Ge5–Ge1–Ge5 108.48 (10) Ge1–Ge5–Ge4 110.69 (13)
K1–6Ge6 3.571 (3) K2–3Ge4 4.326 (5) Ge5–Ge1–Ge5 109.31 (10) Ge1–Ge5–Ge3 104.88 (13)
K1–6Ge5 3.636 (3) K2–2Ge6 4.387 (5) Ge5–Ge1–Ge5 110.64 (10) Ge1–Ge5–Ge6 126.83 (14)
K2–2Ge5 3.359 (4) Ge1–4Ge5 2.400 (3) Ge6–Ge2–Ge6 108.46 (10) Ge4–Ge5–Ge3 106.51 (14)
K2–2Ge6 3.460 (4) Ge2–4Ge6 2.463 (3) Ge6–Ge2–Ge6 111.52 (10) Ge4–Ge5–Ge6 103.60 (14)
K2–2Ge3 3.604 (5) Ge3–Ge3 2.237 (4) Ge3–Ge3–Ge5 108.72 (2) Ge3–Ge5–Ge6 102.67 (14)
K2–2Ge5 3.606 (4) Ge3–3Ge5 2.580 (4) Ge5–Ge3–Ge5 110.21 (15) Ge4–Ge6–Ge2 103.40 (13)
K2–2Ge1 3.621 (3) Ge4–Ge6 2.430 (4) Ge6–Ge4–Ge5 115.68 (15) Ge4–Ge6–Ge5 104.51 (14)
K2–2Ge5 3.889 (5) Ge4–Ge5 2.495 (4) Ge6–Ge4–Ge6 115.48 (15) Ge2–Ge6–Ge4 112.57 (13)
K2–2Ge6 3.950 (4) Ge4–Ge6 2.516 (4) Ge6–Ge4–Ge4 114.77 (15) Ge2–Ge6–Ge5 122.27 (14)
K2–2Ge2 3.981 (3) Ge4–Ge4 2.600 (4) Ge5–Ge4–Ge6 107.56 (14) Ge4–Ge6–Ge5 110.91 (14)


Structure description

The crystal structures of Rb7.50(1)Tl0.50(1)Ge46 (left) and K7.62(1)Tl0.38(1)Ge45.34(3) (right) were shown in Fig. 2. Rb7.50(1)Tl0.50(1)Ge46 crystallized in a type-I clathrate structure in space group Pm[3 with combining macron]n. The clathrate-I contains 46 framework Ge atoms which form two kinds of polyhedral cages. One kind of yellow pentagonal dodecahedron was composed of 12 pentagonal faces ([512]) formed by 8 Ge2 (cyan, at 16i site) and 12 Ge3 (blue, at 24k site). Another kind of violet tetrakaidecahedron was built of 2 hexagonal and 12 pentagonal faces ([51262]) formed by 4 Ge1 (brown, at 6c site), 8 Ge2 and 12 Ge3. The violet tetrakaidecahedra formed the fused the perpendicular double chains in the middle of a couple of opposite edges of three directions in the unit cell by sharing the hexagonal faces. The yellow pentagonal dodecahedra shared 12 pentagonal faces with 12 tetrakaidecahedra, filled the rest vacancies of the corners and body center of the cubic lattice. Red Rb1 (at 2a site) lied in the center of the cage of yellow pentagonal dodecahedron. Violet Rb2 (at 6d site) located in the violet tetrakaidecahedron center.
image file: c6ra14614g-f2.tif
Fig. 2 Clathrate-I structure of Rb7.50(1)Tl0.50(1)Ge46 (left): brown Ge1 at 6c sites, cyan Ge2 at 16i and blue Ge3 at 24k sites form the violet tetrakaidecahedron caged with violet Rb2 (at 6d); Ge2 and Ge3 construct yellow pentagonal dodecahedron caged with red Rb1/Tl1 (at 2a). The 2 × 2 × 2 times superstructure of clathrate-I of K7.62(1)Tl0.38(1)Ge45.34(3) (right) with partial ordering of vacancies brown Ge1 (at 24c) and yellow Ge2 (at 24d), green Ge3 (at 32e), cyan Ge4 (at 96h), blue Ge5 (at 96h), deep blue Ge6 (at 96h) form the violet tetrakaidecahedron caged with violet Rb2 (at 48g) which deviates from the center of tetrakaidecahedron; Ge3, Ge4, Ge5 and Ge6 construct yellow pentagonal dodecahedron caged with red K1 (at 16a).

K7.62(1)Tl0.38(1)Ge45.34(3) crystallized Ia[3 with combining macron]d space group with 2 × 2 × 2 times superstructure of clathrate-I. Wyckoff site transformation from Pm[3 with combining macron]n space group to Ia[3 with combining macron]d space group was shown in Scheme 1. In K7.62(1)Tl0.38(1)Ge45.34(3) superstructure K1/Tl1 (red at 16a) and K2 (violet at 48g) were deduced from 2a and 6d; Ge1 (brown at 24c)/Ge2 (yellow at 24d), Ge3 (green at 32e)/Ge4 (cyan at 96h) and Ge5 (blue at 96h)/Ge6 (deep blue at 96h) were split from 6c, 16i and 24k sites in Pm[3 with combining macron]n. The structure of K7.62(1)Tl0.38(1)Ge45.34(3) was isotypic with Ba8Ge43 (Ia[3 with combining macron]d).24 In Ba8Ge43 Ge preferred at 24d sites and vacancies preferred at 24c sites. Ba2 deviated less from the center of tetrakaidecahedron compared with K2. In Rb7.50(1)Tl0.50(1)Ge46, Rb1/Tl1–Ge2/Ge3 distances in dodecahedron varied in a small range of 3.4360(9) to 3.563(1) Å and Rb2–Ge distances in tetrakaidecahedron changed in a large range of 3.6514 (8) to 4.162(1) Å. Ge–Ge bond distances altered in the range of 2.4902(7) to 2.584 (2) Å. Ge1–Ge3–Ge3 bond angle 124.09(5)° in the six member ring deviated furthest from ideal tetrahedral angle of 109°08′ compared with others.


image file: c6ra14614g-s1.tif
Scheme 1 Wyckoff sites occupied in the transformation from space group Pm[3 with combining macron]n to space group Ia[3 with combining macron]d.

In K7.62(1)Tl0.38(1)Ge45.34(3), K1/Tl1–Ge2/Ge3 distances in dodecahedron varied in a small range of 3.357(3) to 3.636(3) Å. K2–Ge1/Ge2/Ge3 distances in tetrakaidecahedron changed in a large range of 3.359(4) to 4.387(5) Å. The shortest Ge3–Ge3 bond length was 2.237(4) Å and the longest Ge4–Ge4 bond length was 2.600(4) Å. Ge1–Ge5–Ge6 bond angle 126.83(14)° and Ge2–Ge6–Ge5 bond angle 122.27(5)° in six-member ring deviated far away from an ideal tetrahedral angle of 109°08′ compared with others.

Theoretical calculation

Theoretical calculations were performed based on simplified models of Rb7Tl1Ge46 and K7Tl1Ge46 in Pm[3 with combining macron] space group as described in theoretical calculations section. Calculated band structures and high-symmetry axes of the Brillouin Zone for Rb7Tl1Ge46 and K7Tl1Ge46 models are shown in Fig. 3. The abscissa in Fig. 3 indicate the high symmetry directions in Brillouin zone paths of X(0.5, 0, 0), R(0.5, 0.5, 0.5), M(0.5, 0.5, 0) and G(0, 0, 0) in the reciprocal lattices of Rb7Tl1Ge46 and K7Tl1Ge46. The dashed lines correspond to Fermi energy level. The other coloured lines of the figures are electronic energy levels of different bands, which are occupied by electrons below Fermi energy level and are empty above Fermi level. The band structures indicate metallic features for Rb7Tl1Ge46 and K7Tl1Ge46. The atom deduced densities of States (DOS) for Rb7Tl1Ge46 and K7Tl1Ge46 are given in Fig. 4. DOS at Fermi level are mainly determined by Ge s, Ge p orbitals, partial Tl p orbitals and Rb s and Rb p or K s, K p in Rb7Tl1Ge46 and K7Tl1Ge46.
image file: c6ra14614g-f3.tif
Fig. 3 The band structures of Rb7Tl1Ge46 (left) and K7Tl1Ge46 (right).

image file: c6ra14614g-f4.tif
Fig. 4 Total and atom deduced densities of states of Rb7Tl1Ge46 (left) and K7Tl1Ge46 (right).

Conclusions

Type-I clathrates of Rb7.50(1)Tl0.50(1)Ge46 and K7.62(1)Tl0.38(1)Ge45.34(3) were synthesized from constituent elements. Rb7.50(1)Tl0.50(1)Ge46 crystallized in a clathrate-I structure in Pm[3 with combining macron]n space group with the unit cell parameter of a = 10.81559(7) Å. K7.62(1)Tl0.38(1)Ge45.34(3) was a 2 × 2 × 2 times superstructure of clathrate-I, which crystallized in Ia[3 with combining macron]d space group with lattice parameter of a = 21.4290(2) Å. The structural transformation from Rb7.50(1)Tl0.50(1)Ge46 in Pm[3 with combining macron]n to K7.62(1)Tl0.38(1)Ge45.34(3) in Ia[3 with combining macron]d was indicated. The band structures indicated metallic features for both Rb7Tl1Ge46 and K7Tl1Ge46. The densities of states at Fermi level were mainly determined by Ge s and Ge p orbitals in Rb7Tl1Ge46 and K7Tl1Ge46.

Acknowledgements

This work was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants XDB04040200 andXDB04040300).

Notes and references

  1. (a) G. A. Jeffrey, in Inclusion Compounds, ed. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Academic Press Inc., London, UK, 1984 Search PubMed; (b) E. D. Sloan Jr, Clathrate hydrates of natural gases, Marcel Dekker Inc., New York, 2nd edn, 1998 Search PubMed.
  2. (a) C. Cros, M. Pouchard and P. Hagenmuller, J. Solid State Chem., 1970, 2, 570–658 CrossRef CAS; (b) J. S. Kasper, P. Hagenmuller, M. Pouchard and C. Cros, Science, 1965, 150, 1713–1714 CAS; (c) C. Cros, M. Pouchard and P. Hagenmuller, Bull. Soc. Chim. Fr., 1971, 1971, 379–386 Search PubMed; (d) C. Cros and J.-C. Benejat, Bull. Soc. Chim. Fr., 1972, 1972, 1739–1743 Search PubMed; (e) M. Beekman, C. P. Sebastian, Y. Grin and G. S. Nolas, J. Electron. Mater., 2009, 38, 1136–1141 CrossRef CAS; (f) H. O. Horie, T. Kikudome, K. Teramura and S. Yamanaka, J. Solid State Chem., 2009, 182, 129–135 CrossRef CAS; (g) M. Beekman, E. N. Nenghabi, K. Biswas, C. W. Myles, M. Baitinger, Y. Grin and G. S. Nolas, Inorg. Chem., 2010, 49, 5338–5340 CrossRef CAS PubMed.
  3. (a) E. Reny, P. Gravereau, C. Cros and M. Pouchard, J. Mater. Chem., 1998, 8, 2839–2844 RSC; (b) G. K. Ramachandran, J. Dong, J. Diefenbacher, J. Gryko, R. F. Marzke, O. F. Sankey and P. F. McMilan, J. Solid State Chem., 1999, 145, 716–730 CrossRef CAS; (c) M. Beckman, M. Baitinger, H. Borrmann, W. Schnelle, K. Meier, G. S. Nolas and Y. Grin, J. Am. Chem. Soc., 2009, 131, 9642–9643 CrossRef PubMed.
  4. (a) J. Gallmeier, H. Schaefer and A. Weiss, Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol., 1967, 22, 1080 CAS; (b) G. K. Ramachandran, P. F. McMillan, J. Dong and O. F. Sankey, J. Solid State Chem., 2000, 154, 626–634 CrossRef CAS; (c) C. Cros, M. Pouchard, P. Hagenmuller and J. S. Kasper, Bull. Soc. Chim. Fr., 1968, 1968, 2737–2742 Search PubMed; (d) B. Boehme, A. M. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger and Y. Grin, J. Am. Chem. Soc., 2007, 129, 5348–5349 CrossRef CAS PubMed.
  5. A. Wosylus, I. Veremchuk, W. Schnelle, M. Baitinger, U. Schwarz and Y. Grin, Chem.–Eur. J., 2009, 15, 5901–5903 CrossRef CAS PubMed.
  6. (a) J. Gallmeier, H. Schaefer and A. Weiss, Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol., 1969, 24, 665–667 CAS; (b) H. G. von Schnering, J. Llanos, K. Peters, M. Baitinger, Y. Grin and R. Nesper, Z. Kristallogr.–New Cryst. Struct., 2011, 226, 9–10 CAS.
  7. F. Dubois and T. F. Faessler, J. Am. Chem. Soc., 2005, 127, 3264–3265 CrossRef CAS PubMed.
  8. A. Kaltzoglou, T. Faessler, M. Christensen, S. Johnsen, B. Iversen, I. Presniakov, A. Sobolev and A. Shevelkov, J. Mater. Chem., 2008, 18, 5630–5637 RSC.
  9. (a) H. G. von Schnering, R. Kroener, M. Baitinger, K. Peters, R. Nesper and Y. Grin, Z. Kristallogr.–New Cryst. Struct., 2000, 215, 205–206 CAS; (b) A. Kaltzoglou, S. D. Hoffmann and T. F. Faessler, Eur. J. Inorg. Chem., 2007, 26, 4162–4167 CrossRef.
  10. (a) Y. Grin, L. Z. Melekhov, K. A. Chuntonov and S. P. Yatsenko, Crystallogr. Rep., 1987, 32, 290–291 Search PubMed; (b) L. Z. Melekhov, S. P. Yatsenko, K. A. Chuntonov and Y. N. Grin, Russ. Metall., 1987, 2, 208–211 Search PubMed.
  11. I. Veremchuk, A. Wosylus, B. Boehme, M. Baitinger, H. Borrmann, Y. Prots, U. Burkhardt, U. Schwarz and Y. Grin, Z. Anorg. Allg. Chem., 2011, 637, 1281–1286 CrossRef CAS.
  12. S. Stefanoski and G. S. Nolas, Cryst. Growth Des., 2011, 11, 4533–4537 CAS.
  13. A. M. Guloy, Z. Tang, R. Ramlau, B. Boehme, M. Baitinger and Y. Grin, Eur. J. Inorg. Chem., 2009, 17, 2455–2458 CrossRef.
  14. G. A. Slack, in CRC Handbook of thermoelectrics, ed. D. M. Rowe, Chemical Rubber, Boca Raton, FL, 1995, vol. 2, p. 407 Search PubMed.
  15. (a) G. S. Nolas, J. L. Cohn, G. A. Slack and S. B. Schujman, Appl. Phys. Lett., 1998, 73, 178–180 CrossRef CAS; (b) A. Saramat, G. Svensson, A. E. C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S. G. K. Williams, D. M. Rowe, J. D. Bryan and G. D. Stucky, J. Appl. Phys., 2006, 99, 023708 CrossRef.
  16. H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J. T. Zhao and Y. Grin, Inorg. Chem., 2011, 50, 1250–1257 CrossRef CAS PubMed.
  17. (a) S. Yamanaka, E. Enishi, H. Fukuoka and M. Yasukawa, Inorg. Chem., 2000, 39, 56–58 CrossRef CAS PubMed; (b) H. Fukuoka, J. Kiyoto and S. J. Yamanaka, J. Solid State Chem., 2003, 175, 237–244 CrossRef CAS; (c) H. Fukuoka, J. Kiyoto and S. J. Yamanaka, Inorg. Chem., 2003, 42, 2933–2937 CrossRef CAS PubMed; (d) H. Fukuoka, J. Kiyoto and S. Yamanaka, J. Phys. Chem. Solids, 2004, 65, 333–336 CrossRef CAS.
  18. S. Paschen, W. Carrillo-Cabrera, A. Bentien, V. H. Tran, M. Baenitz, Y. Grin and F. Steglich, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 64, 214404 CrossRef.
  19. T. Kawaguchi, K. Tanigaki and M. Yasukawa, Appl. Phys. Lett., 2000, 77, 3438–3440 CrossRef CAS.
  20. A. V. Shevelkov and K. A. Kovnir, Struct. Bonding, 2011, 139, 97–144 CrossRef CAS.
  21. M. A. Kirsanova, A. V. Olenev, A. M. Abakumov, M. A. Bykov and A. V. Shevelkov, Angew. Chem., Int. Ed., 2011, 50, 2371–2374 CrossRef CAS PubMed.
  22. K. A. Kovnir and A. V. Shevelkov, Russ. Chem. Rev., 2004, 73, 923–938 CrossRef CAS.
  23. K. Kovnir, U. Stockert, S. Budnyk, Y. Prots, M. Baitinger, S. Paschen, A. V. Shevelkov and Y. Grin, Inorg. Chem., 2011, 50, 10387–10396 CrossRef CAS PubMed.
  24. (a) F. Dubois and T. F. Faessler, Z. Anorg. Allg. Chem., 2004, 630, 1718 CrossRef; (b) W. Carrillo-Cabrera, S. Budnyk, Y. Prots and Y. Grin, Z. Anorg. Allg. Chem., 2004, 630, 2267–2276 CrossRef CAS; (c) N. L. Okamoto, K. Tanaka and H. Inui, Acta Mater., 2006, 54, 173–178 CrossRef CAS; (d) U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci, W. Carrillo-Cabrera, C. Chubilleau, B. Lenoir, A. Dauscher, N. Oeschler, F. Steglich and Y. Grin, Dalton Trans., 2010, 39, 1078–1088 RSC.
  25. W. Jung, J. Loeincz, R. Ramlau, H. Borrmann, Y. Prots, F. Haarmann, W. Schnelle, U. Burkhardt, M. Baitinger and Y. Grin, Angew. Chem., Int. Ed., 2007, 46, 6725–6728 CrossRef CAS PubMed.
  26. (a) H. Zhang, M. Baitinger, L. Fang, W. Schnelle, H. Borrmann, U. Burkhardt, A. Ormeci, J. T. Zhao and Y. Grin, Inorg. Chem., 2013, 52, 9720–9726 CrossRef CAS PubMed; (b) H. Zhang, X. Xu, W. Li, G. Mu, Huang and X. Xie, RSC Adv., 2015, 5, 53829 RSC.
  27. H. G. von Schnering, R. Kroener, H. Menke, K. Peters and R. Nesper, Z. Kristallogr.–New Cryst. Struct., 1998, 213, 677–678 CAS.
  28. (a) S. Bobev and S. C. Sevov, J. Am. Chem. Soc., 1999, 121, 3795–3796 CrossRef CAS; (b) S. Bobev and S. C. Sevov, J. Solid State Chem., 2000, 153, 92–105 CrossRef CAS.
  29. A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger and Y. Grin, Nature, 2006, 443, 320–323 CrossRef CAS PubMed.
  30. M. Beekman and G. S. Nolas, J. Mater. Chem., 2008, 18, 842–851 RSC.
  31. M. K. Beekman, Synthesis and Characterization of Type II Silicon and Germanium Clathrates, Graduate theses and Dissertations, 2006, http://scholarcommons.usf.edu/etd/3865.
  32. H. Zhang, X. Xu, W. Li, G. Mu, F. Huang and X. Xie, Dalton Trans., 2015, 44, 16937–16945 RSC.
  33. J. V. Zaikina, W. Schnelle, K. A. Kovnir, A. V. Olenev, Y. Grin and A. V. Shevelkov, Solid State Sci., 2007, 9, 664–671 CrossRef CAS.
  34. J. V. Zaikina, K. A. Kovnir, F. Haarmann, W. Schnelle, U. Burkhardt, H. Borrmann, U. Schwarz, Y. Grin and A. V. Shevelkov, Chem.–Eur. J., 2008, 14, 5414–5422 CrossRef CAS PubMed.
  35. J. T. Zhao and J. D. Corbett, Inorg. Chem., 1994, 33, 5721–5726 CrossRef CAS.
  36. (a) H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza and L. Haeming, J. Solid State Chem., 2000, 151, 117–121 CrossRef CAS; (b) S. J. Kim, S. Hu, C. Uher, T. Hogan, B. Huang, J. D. Corbett and M. G. Kanatzidis, J. Solid State Chem., 2000, 153, 321–329 CrossRef CAS; (c) W. Carrillo-Cabrera, J. Curda, H. G. von Schnering, S. Paschen and Y. Grin, Z. Kristallogr.–New Cryst. Struct., 2000, 215, 207–208 CAS; (d) J. H. Kim, N. L. Okamoto, K. Kishida, K. Tanaka and H. Inui, J. Appl. Phys., 2007, 102, 094506 CrossRef; (e) W. Carrillo-Cabrera, H. Borrmann, S. Paschen, M. Baenitz, F. Steglich and Y. Grin, J. Solid State Chem., 2005, 178, 715–728 CrossRef CAS.
  37. M. A. Kirsanova, A. V. Olenev, A. M. Abakumov, M. A. Bykov and A. V. Shevelkov, Angew. Chem., Int. Ed., 2011, 50, 2371–2374 CrossRef CAS PubMed.
  38. Chemistry, Structure and Bonding of Zintl Phases and Ions, ed. M. S. Kauzlarich, VCH Publishers, New York, NY, 1996 Search PubMed.
  39. (a) H. G. von Schnering and H. Menke, Angew. Chem., Int. Ed., 1972, 11, 43–44 CrossRef CAS; (b) H. Menke and H. G. von Schnering, Naturwissenschaften, 1972, 59, 420 CrossRef CAS; (c) H. G. von Schnering and H. Menke, Z. Anorg. Allg. Chem., 1976, 424, 108–114 CrossRef CAS; (d) H. Menke and H. G. von Schnering, Z. Anorg. Allg. Chem., 1973, 395, 223–238 CrossRef CAS.
  40. (a) M. M. Shatruk, K. A. Kovnir, A. V. Shevelkov, I. A. Presniakov and B. A. Popovkin, Inorg. Chem., 1999, 38, 3455–3457 CrossRef CAS PubMed; (b) K. A. Kovnir, M. M. Shatruk, L. N. Reshetova, I. A. Presniakov, E. V. Dikarev, M. Baitinger, F. Haarmann, W. Schnelle, M. Baenitz, Y. Grin and A. V. Shevelkov, Solid State Sci., 2005, 7, 957–968 CrossRef CAS; (c) K. A. Kovnir, A. V. Sobolev, I. A. Presniakov, O. I. Lebedev, G. Van Tendeloo, W. Schnelle, Y. Grin and A. V. Shevelkov, Inorg. Chem., 2005, 44, 8786–8793 CrossRef CAS PubMed; (d) K. Kishimoto, S. Arimura and T. Koyanagi, Appl. Phys. Lett., 2006, 88, 222115 CrossRef.
  41. (a) K. A. Kovnir, A. N. Uglov, J. V. Zaikina and A. V. Shevelkov, Mendeleev Commun., 2004, 4, 135–136 CrossRef; (b) E. Reny, S. Yamanaka, C. Cros and M. Pouchard, Chem. Commun., 2000, 2505–2506 RSC.
  42. J. V. Zaikina, K. A. Kovnir, A. V. Sobolev, I. A. Presniakov, Y. Prots, M. Baitinger, W. Schnelle, A. V. Olenev, O. I. Lebedev, G. van Tendeloo, Y. Grin and A. V. Shevelkov, Chem.–Eur. J, 2007, 13, 5090–5099 CrossRef CAS PubMed.
  43. M. M. Shatruk, K. A. Kovnir, M. Lindsjo, I. A. Presniakov, L. A. Kloo and A. V. Shevelkov, J. Solid State Chem., 2001, 161, 233–242 CrossRef CAS.
  44. (a) J. V. Zaikina, K. A. Kovnir, U. Schwarz, H. Borrmann and A. V. Shevelkov, Z. Kristallogr.–New Cryst. Struct., 2007, 222, 177–179 CAS; (b) K. Kishimoto, T. Koyanagi, K. Akai and M. Matsuura, Jpn. J. Appl. Phys., Part 2, 2007, 46, L746–L748 CrossRef CAS; (c) F. Philipp and P. Schmidt, J. Cryst. Growth, 2008, 310, 5402–5408 CrossRef CAS; (d) J. V. Zaikina, K. A. Kovnir, U. Burkhardt, W. Schnelle, F. Haarmann, U. Schwarz, Y. Grin and A. V. Shevelkov, Inorg. Chem., 2009, 48, 3720–3730 CrossRef CAS PubMed; (e) J. V. Zaikina, T. Mori, K. Kovnir, D. Teschner, A. Senyshyn, U. Schwarz, Y. Grin and A. V. Shevelkov, Chem.–Eur. J, 2010, 16, 12582–12589 CrossRef CAS PubMed.
  45. (a) N. Jaussaud, M. Pouchard, G. Goglio, C. Cros, A. Ammar, F. Weill and P. Gravereau, Solid State Sci., 2003, 5, 1193–1200 CrossRef CAS; (b) N. Jaussaud, P. Toulemonde, M. Pouchard, A. San Miguel, P. Gravereau, S. Pechev, G. Goglio and C. Cros, Solid State Sci., 2004, 6, 401–411 CrossRef CAS; (c) N. Jaussaud, M. Pouchard, P. Gravereau, S. Pechev, G. Goglio, C. Cros, A. San Miguel and P. Toulemonde, Inorg. Chem., 2005, 44, 2210–2214 CrossRef CAS PubMed.
  46. (a) K. Kishimoto, K. Akai, N. Muraoka, T. Koyanagi and M. Matsuura, Appl. Phys. Lett., 2006, 89, 172106 CrossRef; (b) M. A. Kirsanova, L. N. Reshetova, A. V. Olenev, A. M. Abakumov and A. V. Shevelkov, Chem.–Eur. J, 2011, 17, 5719–5726 CrossRef CAS PubMed.
  47. M. A. Kirsanova, T. Mori, S. Maruyama, M. Matveeva, D. Batuk, A. M. Abakumov, A. V. Gerasimenko, A. V. Olenev, Y. Grin and A. V. Shevelkov, Inorg. Chem., 2013, 52, 577–588 CrossRef CAS PubMed.
  48. J. Dunner and A. Mewis, Z. Anorg. Allg. Chem., 1995, 621, 191–196 CrossRef.
  49. J. Fulmer, O. I. Lebedev, V. V. Roddatis, D. C. Kaseman, S. Sen, J. A. Dolyniuk, K. Lee, A. V. Olenev and K. Kovnir, J. Am. Chem. Soc., 2013, 135, 12313–12323 CrossRef CAS PubMed.
  50. L. G. Akselrud, P. Y. Zavalii, Y. N. Grin, V. K. Pecharsky, B. Baumgartner and E. Wölfel, Mater. Sci. Forum, 1993, 133–136, 335–342 CrossRef CAS.
  51. K. Brandenburg, Diamond 3.0, Crystal Impact GbR, Bonn, Germany, 1997–2004 Search PubMed.
  52. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169–11186 CrossRef CAS.
  53. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available. CCDC 1430735 and 1430736. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ra14614g

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.