CuI-catalyzed oxidative cross coupling of oximes with tetrahydrofuran: a direct access to O-tetrahydrofuran-2-yl oxime ethers

Zhi-Hui Ren*, Mi-Na Zhao and Zheng-Hui Guan*
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China. E-mail: guanzhh@nwu.edu.cn; renzhh@nwu.edu.cn

Received 28th December 2015 , Accepted 4th February 2016

First published on 5th February 2016


Abstract

An efficient copper(I)-catalyzed oxidative tetrahydrofuranylation of oximes has been developed. This reaction shows good functional group tolerance and various substituted ketoximes and aldoximes coupled smoothly with THF to give the corresponding O-tetrahydrofuran-2-yl oxime ethers in high yields.


The C–O bond construction is one of the fundamental researches in organic chemistry.1 Traditional methods for the construction of C–O bonds, such as Ullmann-type C–O coupling and the Williamson reaction, have been established in the past few decades.2 However, most of these reactions were conducted under relatively harsh conditions. In recent years, palladium-catalyzed cross-coupling of aryl chlorides (bromides) and phenols or aliphatic alcohols for the construction of C–O bonds under mild conditions has been developed by the groups of Buchwald3 and Hartwig.4 Apparently, these methods all required prefunctionalized of substrates. Recently, the direct C–H bond oxidative coupling has emerged as an excellent strategy in organic synthesis since their atom-economical and environmental beneficial properties.5 Therefore, the constructing C–O bond via direct C–H oxidative coupling would be an attractive area of research.6

The α-functionalized ether derivatives are prevalent in many functional molecules or natural products.7 They are useful synthetic intermediates in organic chemistry. Therefore, the method for the synthesis of α-functionalized ethers via C–H oxidative coupling has been attracting great interest.8 In 2013, DDQ-mediated C–O bond formation through oxidative coupling of isochroman and oxime has been developed by Bao and coworkers.9 Recently, oxidative coupling of THF with arylboronic acid, alkene, alkynes, 2-aryl-metal reagents, alcohols, phenols and carboxylic acids has been developed to synthesize various α-functionalized tetrahydrofuranyl derivatives.10 However, to our knowledge, the oxidative coupling of oximes and tetrahydrofuran has not been developed. Based on our interest in Cu-catalyzed coupling reaction of oxime derivatives,11 we report herein a CuI-catalyzed oxidative cross-coupling of oximes with tetrahydrofuran for the synthesis of O-tetrahydrofuran-2-yl oxime ethers.

We began our investigation by examining the coupling of acetophenone oxime 1a and THF in the presence of CuI and TBHP at 120 °C. Unfortunately, no reaction occurred (Table 1, entry 1). Recently, allyl and benzyl system have been extensively investigated as the propagator of the radical chain due to their promotion to the radical formation of THF.10h Therefore, allyl bromide, allyl chloride, benzyl bromide and benzyl chloride were screened in the reaction (Table 1, entries 2–5). To our delight, the desired product 2a was indeed obtained in 70% yield when allyl bromide was used as the additive (Table 1, entry 2). Allyl chloride, benzyl bromide and benzyl chloride were inactive for the reaction (Table 1, entries 3–5). Further experiments showed that CuI was superior to other copper catalysts (Table 1, entries 6–10). Notably, no reaction occurred in the absence of the copper catalyst (Table 1, entry 11). Optimizing with various oxidants, such as BPO, DCP and DTBP, revealed that DTBP was the most effective oxidant for this reaction, improving the yield of 2a to 77% (Table 1, entries 12–14). Finally, the yield of 2a was further increased to 88% by adding 4 equiv. of DTBP (Table 1, entry 15).

Table 1 Optimization of the reaction conditionsa

image file: c5ra27899f-u1.tif

Entry Catalyst Oxidant Additive Yield (%)
a Reaction conditions: acetophenone oxime 1a (0.5 mmol), oxidant (1.0 mmol), additive (1.0 mmol), catalyst (0.05 mmol), THF (5 mL), 120 °C, Ar; isolated yield. TBHP = tert-butyl hydroperoxide, BPO = benzoyl peroxide, DCP = dicumyl peroxide, DTBP = di-tert-butyl-peroxide.b 4 equiv. DTBP.
1 CuI TBHP <5
2 CuI TBHP Allyl bromide 70
3 CuI TBHP Allyl chloride <5
4 CuI TBHP Benzyl bromide <5
5 CuI TBHP Benzyl chloride <5
6 CuBr TBHP Allyl bromide 50
7 CuCl TBHP Allyl bromide 47
8 CuBr2 TBHP Allyl bromide 49
9 CuCl2 TBHP Allyl bromide 49
10 Cu(OAc)2 TBHP Allyl bromide 51
11 TBHP Allyl bromide 0
12 CuI BPO Allyl bromide <5
13 CuI DCP Allyl bromide 63
14 CuI DTBP Allyl bromide 77
15b CuI DTBP Allyl bromide 88


With the optimized reaction conditions established, a series of ketoximes and aldoximes were investigated to extend the substrate scope (Table 2). This transformation displayed high functional group tolerance. Ketoximes with both electron-donating and electron-withdrawing substituents on the aromatic rings showed similar reactivity to give the target products 2a–2f in good yields (70–88%). Halogen substituents such as fluoro and chloro were tolerated as well in this reaction to afford the corresponding products 2d–2e in 84% and 85% yields, respectively. 2-Naphthyl ketoxime 1g also reacted smoothly with THF to give the 2g in 80% yield. Furthermore, phenyl alkyl ketoximes with different alkyl groups, such as ethyl, iso-propyl, tert-butyl and benzyl, reacted smoothly to afford the corresponding ether products 2h–2l in 68–81% yields.

Table 2 Copper-catalyzed oxidative C–O coupling reaction of oximes and tetrahydrofurana
a Reaction conditions: 1 (0.5 mmol), DTBP (2.0 mmol), allyl bromide (1.0 mmol), CuI (0.05 mmol), THF (5 mL), 120 °C, Ar; isolated yield.
image file: c5ra27899f-u2.tif


Subsequently, the cyclic ketoximes derived from α-tetralones and indanones were investigated under the standard conditions to extend the substrate scope. Satisfactorily, the desired products 2m–2p were obtained in 67–78% yields. Moreover, the derivatives of benzophenone oximes were also tolerated in the reaction to give the desired products 2q and 2r in moderate yields. It should be noted that aromatic aldoximes exhibited similar reactivity with ketoxime to give the corresponding products 2s–2t in good yields. In addition, 2-furaldoxime was also converted to the target product 2u in 51% yield.

Next, various ethers, such as glycol dimethyl ether, 1,4-dioxane, pyran and 4-methylmorpholine were investigated to extend the substrate scope. Unfortunately, no desired reaction occurred and acetophenone was observed as the main byproduct in these reactions.

To gain more insight into the mechanism of the reaction, a radical-trapping reagent, (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO), was added to the reaction under the standard conditions (Scheme 1). Formation of O-tetrahydrofuran-2-yl oxime ether 2a was completely suppressed, implying that the oxidative coupling reaction probably proceeds through a radical pathway.


image file: c5ra27899f-s1.tif
Scheme 1 Investigation of the reaction mechanism.

On the basis of the aforementioned results and previous studies, a tentative mechanism for this copper-catalyzed oxidative coupling reaction was proposed in Scheme 2. Firstly, the α-C–H bond of THF is oxidated by DTBP to generate 2-tetrahydrofuranyl radical A.10b,10d,10f Next, intermediate A was transformed to 2-bromo-tetrahydrofuranyl B via radical transfer with allyl bromide.10h The allyl radical intermediate C was captured by a tert-butyl peroxy radical to give the 4,4-dimethylpent-1-ene. In cycle, the initial step involves the transformation of oxime 1 into an Cu(I)oxime complex E, followed by reacting with 2-bromo-tetrahydrofuranyl B to give the intermediate F. Finally, the reductive elimination of intermediate F provides the product 2.12


image file: c5ra27899f-s2.tif
Scheme 2 Tentative mechanisms of the reaction.

In summary, we have developed a novel Cu-catalyzed cross coupling of oximes with THF for the synthesis of O-tetrahydrofuran-2-yl oxime ethers. The reaction shows good functional group tolerance and affords a series of substituted O-tetrahydrofuran-2-yl oxime ethers in good yields. Further investigations on the transformations of oximes are in progress in our laboratory.

Acknowledgements

This work was supported by generous grants from the Fund of Shanxi Province (2014JQ2078) and National Natural Science Foundation of China (21272183 and 21472147).

Notes and references

  1. (a) A. Corma, A. Leyva-Pérez and M. J. Sabater, Chem. Rev., 2011, 111, 1657 CrossRef CAS PubMed; (b) N. Krause and C. Winter, Chem. Rev., 2011, 111, 1994 CrossRef CAS PubMed; (c) C. I. Herrerías, X. Yao, Z. Li and C.-J. Li, Chem. Rev., 2007, 107, 2546 CrossRef PubMed; (d) E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, Chem. Rev., 2007, 107, 5318 CrossRef CAS PubMed; (e) E. Fuhrmann and J. Talbiersky, Org. Process Res. Dev., 2005, 9, 206 CrossRef CAS.
  2. (a) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2008, 47, 3096 CrossRef CAS PubMed; (b) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954 CrossRef CAS PubMed; (c) A. B. Naidu, E. A. Jaseer and G. Sekar, J. Org. Chem., 2009, 74, 3675 CrossRef CAS PubMed; (d) A. B. Naidu and G. Sekar, Synthesis, 2010, 579 CAS; (e) R. Hosseinzadeh, M. Tajbakhsh, M. Mohadjerani and M. Alikarami, Synlett, 2005, 1101 CrossRef CAS; (f) K. Takaishi, M. Kawamoto, A. Muranaka and M. Uchiyama, Org. Lett., 2012, 14, 3252 CrossRef CAS PubMed; (g) Y. Peng and G. Song, Green Chem., 2002, 4, 349 RSC.
  3. (a) A. V. Vorogushin, X. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 8146 CrossRef CAS PubMed; (b) C. H. Burgos, T. E. Barder, X. Huang and S. L. Buchwald, Angew. Chem., Int. Ed., 2006, 45, 4321 CrossRef CAS PubMed; (c) K. W. Anderson, T. Ikawa, R. E. Tundel and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 10694 CrossRef CAS PubMed; (d) X. Wu, B. P. Fors and S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 9943 CrossRef CAS PubMed; (e) L. Salvi, N. R. Davis, S. Z. Ali and S. L. Buchwald, Org. Lett., 2012, 14, 170 CrossRef CAS PubMed; (f) N. C. Bruno and S. L. Buchwald, Org. Lett., 2013, 15, 2876 CrossRef CAS PubMed.
  4. (a) J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, CA, 2010 Search PubMed; (b) Q. Shelby, N. Kataoka, G. Mann and J. Hartwig, J. Am. Chem. Soc., 2000, 122, 10718 CrossRef CAS; (c) N. Kataoka, Q. Shelby, J. P. Stambuli and J. F. Hartwig, J. Org. Chem., 2002, 67, 5553 CrossRef CAS PubMed; (d) C. S. Sevov and J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 9303 CrossRef CAS PubMed.
  5. For recent reviews of the direct C–H bond oxidative coupling, see: (a) Q. Liu, R. Jackstell and M. Beller, Angew. Chem., Int. Ed., 2013, 52, 13871 CrossRef CAS PubMed; (b) A. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234 CrossRef PubMed; (c) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215 CrossRef CAS PubMed; (d) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Rev., 2011, 111, 1293 CrossRef CAS PubMed; (e) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062 CrossRef CAS PubMed; (f) Z. Shao and F. Peng, Angew. Chem., Int. Ed., 2010, 49, 9566 CrossRef CAS PubMed; (g) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094 CrossRef CAS PubMed.
  6. (a) Z. Huang, L. Jin, Y. Feng, P. Peng, H. Yi and A. Lei, Angew. Chem., Int. Ed., 2013, 52, 7151 CrossRef CAS PubMed; (b) E. Jijy, P. Prakash, M. Shimi, P. M. Pihko, N. Josepha and K. V. Radhakrishnan, Chem. Commun., 2013, 49, 7349 RSC; (c) Y. Unoh, Y. Hashimoto, D. Takeda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2013, 15, 3258 CrossRef CAS PubMed; (d) X. Wang, Y. Lu, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc., 2010, 132, 12203 CrossRef CAS PubMed; (e) L. V. Desai, K. L. Hull and M. S. Sanford, J. Am. Chem. Soc., 2004, 126, 9542 CrossRef CAS PubMed.
  7. (a) V. Mammoli, A. Bonifazi, F. D. Bello, E. Diamanti, M. Giannella, A. L. Hudson, L. Mattioli, M. Perfumi, A. Piergentili, W. Quaglia, F. Titomanlio and M. Pigini, Bioorg. Med. Chem., 2012, 20, 2259 CrossRef CAS PubMed; (b) I. A. Katsoulis, G. Kythreoti, A. Papakyriakou, K. Koltsida, P. Anastasopoulou, C. I. Stathakis, I. Mavridis, T. Cottin, E. Saridakisa and D. Vourloumis, ChemBioChem, 2011, 12, 1188 CrossRef CAS PubMed; (c) S. Aoki, Y. Watanabe, M. Sanagawa, A. Setiawan, N. Kotoku and M. Kobayashi, J. Am. Chem. Soc., 2006, 128, 3148 CrossRef CAS PubMed; (d) F. A. Macías, J. L. G. Galindo, R. M. Varela, A. Torres, J. M. G. Molinillo and F. R. Fronczek, Org. Lett., 2006, 8, 4513 CrossRef PubMed; (e) S. M. Miles, S. P. Marsden, R. J. Leatherbarrow and W. J. Coates, J. Org. Chem., 2004, 69, 6874 CrossRef CAS PubMed.
  8. (a) B. D. Barve, Y.-C. Wu, M. El-Shazly, M. Korinek, Y.-B. Cheng, J.-J. Wang and F.-R. Chang, Org. Lett., 2014, 16, 1912 CrossRef CAS PubMed; (b) Z. Xie, Y. Cai, H. Hu, C. Lin, J. Jiang, Z. Chen, L. Wang and Y. Pan, Org. Lett., 2013, 15, 4600 CrossRef CAS PubMed; (c) Z. Jiao, S. Zhang, C. He, Y. Tu, S. Wang, F. Zhang, Y. Zhang and H. Li, Angew. Chem., Int. Ed., 2012, 51, 8811 CrossRef CAS PubMed; (d) S.-K. Xiang, B. Zhang, L.-H. Zhang, Y. Cui and N. Jiao, Sci. China: Chem., 2012, 55, 50 CrossRef CAS; (e) P. P. Singh, S. Gudup, S. Ambala, U. Singh, S. Dadhwal, B. Singh, S. D. Sawant and R. A. Vishwakarma, Chem. Commun., 2011, 47, 5852 RSC; (f) T. He, L. Yu, L. Zhang, L. Wang and M. Wang, Org. Lett., 2011, 13, 5016 CrossRef CAS PubMed; (g) S. Pan, J. Liu, H. Li, Z. Wang, X. Guo and Z. Li, Org. Lett., 2010, 12, 1932 CrossRef CAS PubMed.
  9. H.-F. He, K. Wang, B. Xing, G. Sheng, T. Ma and W. Bao, Synlett, 2013, 211 CAS.
  10. (a) D. Liu, C. Liu, H. Li and A. Lei, Chem. Commun., 2014, 50, 3623 RSC; (b) D. Liu, C. Liu, H. Li and A. Lei, Angew. Chem., Int. Ed., 2013, 52, 4453 CrossRef CAS PubMed; (c) M.-K. Wang, Z.-l. Zhou, R.-Y. Tang, X.-G. Zhang and C.-l. Deng, Synlett, 2013, 24, 737 CrossRef CAS; (d) G. S. Kumar, B. Pieber, K. R. Reddy and C. O. Kappe, Chem.–Eur. J., 2012, 18, 6124 CrossRef CAS PubMed; (e) H. Gunduz, V. Kumbaraci and N. Talinli, Synlett, 2012, 23, 2473 CrossRef CAS; (f) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu and X. Wan, Chem.–Eur. J., 2011, 17, 4085 CrossRef CAS PubMed; (g) S. Y. Zhang, F. M. Zhang and Y. Q. Tu, Chem. Soc. Rev., 2011, 40, 1937 RSC; (h) L. Troisi, C. Granito, L. Ronzini, F. Rosato and V. Videtta, Tetrahedron Lett., 2010, 51, 5980 CrossRef CAS; (i) T. Akindele, K.-I. Yamada and K. Tomioka, Acc. Chem. Res., 2009, 42, 345 CrossRef CAS PubMed.
  11. (a) W. Du, M.-N. Zhao, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Chem. Commun., 2014, 50, 7437 RSC; (b) M.-N. Zhao, R.-R. Hui, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Org. Lett., 2014, 16, 3082 CrossRef CAS PubMed; (c) L. Ran, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Green Chem., 2014, 16, 112 RSC; (d) H. Liang, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Chem.–Eur. J., 2013, 19, 9789 CrossRef CAS PubMed; (e) M.-N. Zhao, H. Liang, Z.-H. Ren and Z.-H. Guan, Synthesis, 2012, 44, 1501 CrossRef CAS; (f) Z.-H. Ren, Z.-Y. Zhang, B.-Q. Yang, Y.-Y. Wang and Z.-H. Guan, Org. Lett., 2011, 13, 5394 CrossRef CAS PubMed; (g) Z.-H. Guan, Z.-Y. Zhang, Z.-H. Ren, Y.-Y. Wang and X. Zhang, J. Org. Chem., 2011, 76, 339 CrossRef CAS PubMed; (h) L. Ran, H. Liang and Z.-H. Guan, Chin. J. Org. Chem., 2013, 33, 66 CrossRef CAS.
  12. (a) S.-L. Zhang and H.-J. Fan, Organometallics, 2013, 32, 4944 CrossRef CAS; (b) G. Lefevre, G. Franc, A. Tlili, C. Adamo, M. Taillefer, I. Ciofini and A. Jutand, Organometallics, 2012, 31, 7694 CrossRef CAS; (c) R. A. Altman, A. M. Hyde, X.-H. Huang and S. L. Buchwald, J. Am. Chem. Soc., 2008, 130, 9613 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: Detailed experimental procedures and spectral data for all products. See DOI: 10.1039/c5ra27899f

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.