Combinatorial synthesis of spiro[indoline-3,2′-pyrrole] derivatives via a three-component reaction under catalyst-free conditions

Guanghao Shi, Xinwei He, Yongjia Shang* and Meihua Xie*
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China. E-mail: shyj@mail.ahnu.edu.cn; xiemh@mail.ahnu.edu.cn; Fax: +86-553-3883517; Tel: +86-553-5910129

Received 12th November 2015 , Accepted 19th January 2016

First published on 19th January 2016


Abstract

Reported here is a convenient catalyst-free method for preparing a series of spiro[indoline-3,2′-pyrroles] from a three-component reaction of isatins, α-amino acid and phenylpropiolic acid esters in refluxing isopropanol with high regioselectivity and yields. A plausible mechanism for this process was proposed. In addition, this protocol permitted the facile construction of spiro[indoline-3,2′-pyrroles] through an expanded scope of substrates.


Introduction

The ability to access spirocyclic nitrogen-containing heterocycles has always remained a great inspiration for organic chemists because of their widespread prevalence in nature.1 As one of the most important class of spirooxidoles,2 the spiro[indoline-3,2′-pyrrole] derivatives exhibited promising pharmaceutical activities such as antimicrobial,3 anticancer,4 antitumor,5 antioxidant,6 and many others7 and were cytotoxic to MCF-7 cells.8 Therefore, intensive efforts have been made to design and develop new methods for the construction of novel synthetic spirooxindole-fused-heterocycles.9 Recent synthetic methods were completed in racemic manners10 or employed chiral starting materials,11 and catalytic asymmetric transformations to access this spirooxindole scaffold have sporadically been described in the literature.12

Multicomponent reactions (MCRs) have gained tremendous attention from medicinal and organic chemists because they offerred highly convergent routes to complex molecules. Additionally, MCRs did not require the isolation and purification intermediates thereby reduced the time, cost, and waste production.13 Therefore, the MCRs were attractive in the area of organic/medicinal/pharmaceutical chemistry.14 As part of our program on the study of developing new multicomponent reactions for the synthesis of heterocyclic compounds,15 herein we wish to report the efficient synthesis of spiro[indoline-3,2′-pyrrole] derivatives from the three-component reactions of isatins, α-amino acid and phenylpropiolic acid esters under catalyst-free conditions (Scheme 1).


image file: c5ra23860a-s1.tif
Scheme 1 Synthesis of spiro[indoline-3,2′-pyrrole] derivatives by the three-component reactions of isatins, α-amino acid and phenylpropiolic acid esters.

Results and discussion

We initiated the investigation using 5-methylindoline-2,3-dione (1b), sarcosine (2a), and methyl 3-phenylpropiolate (3a) in acetonitrile under refluxing for 10 h (Table 1, entry 1). To our delight, the desired product 4b was obtained in 71% yield. The reaction was further carried out in various solvents and temperatures to improve the yield, the results were summarized in Table 1. Among the examined solvents, isopropanol provided an optimum isolated yield of 85% for 4b (Table 1, entry 5), whereas methanol, ethanol, 1,2-dichloroethane (DCE), tetrahydrofuran (THF), dimethylformamide (DMF), toluene, and 1,4-dioxane gave low yields (Table 1, entries 2–4, 6–9). When H2O, diethyl ether (Et2O) or dichloromethane (DCM) was used as the solvent, a lower yield of the product was obtained (Table 1, entries 10–12). The influence of the reaction time and temperature were also investigated, but the results were negative (Table 1, entries 13–18). Thus, the isopropanol was considered to be the best solvent and the optimum refluxing time was 8 h (Table 1, entry 5).
Table 1 Optimization of the reaction conditionsa

image file: c5ra23860a-u1.tif

Entry Solvent Temp (°C) Time (h) Yieldb (%)
a Reaction conditions: 5-methylindoline-2,3-dione 1a (0.1 mmol), sarcosine 2a (0.12 mmol), and methyl 3-phenylpropiolate 3a (0.1 mmol), solvent (5 mL).b Isolated yield.
1 Acetonitrile Reflux 10 71
2 MeOH Reflux 8 72
3 EtOH Reflux 8 71
4 DCE Reflux 8 63
5 Isopropanol Reflux 8 85
6 THF Reflux 8 55
7 DMF Reflux 8 68
8 Toluene Reflux 8 75
9 1,4-Dioxane Reflux 8 78
10 DCM Reflux 8 Trace
11 Et2O Reflux 8 Trace
12 H2O Reflux 8 Trace
13 Isopropanol r.t. 8 Trace
14 Isopropanol 40 8 Trace
15 Isopropanol 60 8 60
16 Isopropanol Reflux 4 40
17 Isopropanol Reflux 6 65
18 Isopropanol Reflux 12 83


Under the optimal conditions, various isatins 1, α-amino acids 2 and phenylpropiolate esters 3 were examined to test the scope and limitation of this three-component reaction, and the results were summarized in Table 2.

Table 2 Synthesis of spiro[indoline-3,2′-pyrrole] derivatives via three-component reaction of isatins, β-amino acid, and phenylpropiolate estersa

image file: c5ra23860a-u2.tif

Entry R1, R2, R3, R4 R5 R6 Product Yieldb (%)
a Reaction conditions: isatins 1 (0.1 mmol), α-amino acid 2 (0.12 mmol), and phenylpropiolate esters 3 (0.1 mmol), isopropanol (5 mL) at refluxing.b Isolated yields.
1 1a (H, H, H, H) CH3 (2a) OCH3 (3a) 4a 85
2 1b (CH3, H, H, H) CH3 (2a) OCH3 (3a) 4b 83
3 1c (CH3CH2, H, H, H) CH3 (2a) OCH3 (3a) 4c 82
4 1d ((CH3)2CH, H, H, H) CH3 (2a) OCH3 (3a) 4d 81
5 1e (CH3O, H, H, H) CH3 (2a) OCH3 (3a) 4e 63
6 1f (F, H, H, H) CH3 (2a) OCH3 (3a) 4f 90
7 1g (Cl, H, H, H) CH3 (2a) OCH3 (3a) 4g 88
8 1h (Br, H, H, H) CH3 (2a) OCH3 (3a) 4h 87
9 1i (I, H, H, H) CH3 (2a) OCH3 (3a) 4i 86
10 1j (H, H, CH3, H) CH3 (2a) OCH3 (3a) 4j 81
11 1k (H, H, F, H) CH3 (2a) OCH3 (3a) 4k 88
12 1l (H, Br, H, H) CH3 (2a) OCH3 (3a) 4l 86
13 1m (H, H, H, CH3) CH3 (2a) OCH3 (3a) 4m 55
14 1n (CH3CH2, H, H, CH3) CH3 (2a) OCH3 (3a) 4n 57
15 1o (CH3O, H, H, CH3) CH3 (2a) OCH3 (3a) 4o 47
16 1a (H, H, H, H) H (2b) OCH3 (3a) 4p 85
17 1b (CH3, H, H, H) H (2b) OCH3 (3a) 4q 83
18 1f (F, H, H, H) H (2b) OCH3 (3a) 4r 88
19 1a (H, H, H, H) CH3CH2 (2c) OCH3 (3a) 4s 86
20 1b (CH3, H, H, H) CH3CH2 (2c) OCH3 (3a) 4t 82
21 1f (F, H, H, H) CH3CH2 (2c) OCH3 (3a) 4u 84
22 1a (H, H, H, H) CH3 (2a) OCH2CH3 (3b) 4v 73
23 1b (CH3, H, H, H) CH3 (2a) OCH2CH3 (3b) 4w 72
24 1f (F, H, H, H) CH3 (2a) OCH2CH3 (3b) 4x 87
25 1a (H, H, H, H) CH3 (2a) CH3 (3c) 4y 52
26 1b (CH3, H, H, H) CH3 (2a) CH3 (3c) 4z 50
27 1f (F, H, H, H) CH3 (2a) CH3 (3c) 4aa 51


In most cases, the reactions of isatins, sarcosine 2a, and methyl 3-phenylpropiolate 3a were proceeded smoothly, and the yields were very good (up to 90% yield). It was observed that the nature of the substituent on the benzene ring of isatins affected the yields of the products. As illustrated in Table 2, isatins with electron-withdrawing R1 groups (e.g. –F, Cl, –Br, –I) resulted in higher yields than when with electron-donating groups (e.g. –CH3, –CH2CH3, –CH(CH3)2) (Table 2, entries 2–4, 6–9). When isatin with a strong electron-donating group (–OCH3) was subjected to this reaction, the yield of the desired product 4e decreased to 63% (Table 2, entry 5). However, when protected isatins were used as substrates under the optimal reaction conditions, only moderate yields were achieved (Table 2, entries 13–15). When other position substituent of isatins with R2, R3 groups were applied to this reaction (Table 2, entries 10–12), the yields (4j to 4l) were 81%, 88%, and 86%, respectively. The structure of the product 4b was confirmed by X-ray crystallographic analysis as shown in Fig. 1.


image file: c5ra23860a-f1.tif
Fig. 1 X-ray crystal structure of product 4b.16

To further demonstrate the versatility of the present method, other common α-amino acids such as 2-aminoacetic acid (2b), 2-(ethylamino)acetic acid (2c) and other phenylpropiolate ester such as ethyl 3-phenylpropiolate (3b), were also used in the three-component reaction under standard reaction conditions. The reactions usually produced the corresponding spiro[indoline-3,2′-pyrroles] 4p–4x as the main product in satisfactory yields. The scope and generality of the developed reaction were further tested by using 4-phenylbut-3-yn-2-one (3c) in the three-component reaction. Under the same reaction conditions, the yield of the desired products 4y, 4z, and 4aa could reach to 52%, 50%, and 51%, respectively.

Based on the above results and literature reports,17 a plausible mechanism for this multicomponent reaction was proposed. First, the condensation of isatin 1a with sarcosine 2a afforded the corresponding azomethine ylide A, which was formed by migration of a proton. Subsequently, the protic solvent of isopropanol would promote the decarboxylation of azomethine ylid A to form the 1,3-dipole B. Then, the 1,3-dipolar cycloaddition of intermediate B with methyl 3-phenylpropiolate 3a results in the final product spiro[indoline-3,2′-pyrrole] 4a (Scheme 2).


image file: c5ra23860a-s2.tif
Scheme 2 Proposed reaction mechanism of the multicomponent reaction.

Conclusions

In conclusion, we developed a novel method for the synthesis of spiro[indoline-3,2′-pyrrole] derivatives without any catalysts or external additives. The reaction was believed to be proceeded with sequential generation of azomethine ylide and 1,3-dipolar cycloaddition reaction. In comparison to the metal-catalyzed reactions, this effective method was an environmentally friendly process. This simple synthesis with the ability to incorporate multiple functional groups into a desired spiro[indoline-3,2′-pyrrole] ring system provided an attractive strategy for pharmaceutical building blocks and medicinal chemistry applications.

Experimental section

General

Unless otherwise specified, all reagents and starting materials were purchased from commercial sources and used as received, and the solvents were purified and dried by standard procedures. The chromatography solvents were technical grade and distilled prior to use. Flash chromatography was performed using 200–300 mesh silica gel with the indicated solvent system according to standard techniques. The 1H and 13C NMR data were recorded on 400 MHz NMR spectrometers, unless otherwise specified. Chemical shifts (δ) in parts per million are reported relative to the residual signals of chloroform (7.26 ppm for 1H and 76.1 ppm for 13C). Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet), and coupling constants (J) are reported in hertz. HRMS analysis with a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m/z) ratios in atomic mass units. IR spectra were measured as dry films (KBr), and peaks are reported in terms of wave number (cm−1).

General procedure for the synthesis of methyl 1′,5-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate 4b

A mixture of isatin 5-methylindoline-2,3-dione 1b (0.1 mmol), sarcosine 2a (0.12 mmol) and methyl 3-phenylpropiolate 3a (0.1 mmol) in isopropanol (5 mL) was heated at refluxing for 8 h in an oil bath. Upon completion of the reaction, the mixture was cooled to room temperature, and then evaporated in vacuum. The residue was purified by flash column chromatography on silica gel with ethyl acetate and petroleum ether (3[thin space (1/6-em)]:[thin space (1/6-em)]1, v/v) as the eluting solvent to produce product 4b at a yield of 83%.

Methyl 1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4a)

White solid; mp 73–75 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.27 (d, J = 7.2 Hz, 1H), 7.18–7.12 (m, 4H), 6.97 (t, J = 7.2 Hz, 1H), 6.85–6.84 (m, 2H), 6.68 (d, J = 7.6 Hz, 1H), 4.07 (s, 2H), 3.59 (s, 3H), 2.17 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.99, 163.29, 158.99, 151.16, 142.21, 133.18, 132.84, 131.55, 130.44, 129.79, 128.93, 128.81, 128.20, 127.81, 114.31, 112.39, 83.25, 60.27, 51.94, 35.26 ppm; IR (KBr) ν: 3250, 1724, 1618, 1469, 1441, 1315, 1225, 1192, 755, 697 cm−1; HRMS (ESI) calcd for C20H18N2O3 ([M + H]+) 335.1396, found 335.1389.

Methyl 1′,5-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4b)

White solid; mp 85–87 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.42 (s, 1H), 7.21–7.15 (m, 4H), 7.02 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 6.4 Hz, 2H), 6.62 (d, J = 8.0 Hz, 1H), 4.21–4.13 (m, 2H), 3.55 (s, 3H), 2.25 (s, 3H), 2.24 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.45, 163.18, 159.03, 158.66, 151.47, 140.52, 132.62, 131.77, 131.12, 130.61, 128.87, 128.14, 127.90, 127.02, 126.10, 110.35, 83.11, 60.17, 52.00, 35.43, 21.00 ppm; IR (KBr) ν: 3435, 1686, 1627, 1494, 1414, 1206, 1137, 1075, 546, 518 cm−1; HRMS (ESI) calcd for C21H20N2O3 ([M + H]+) 349.1552, found 349.1544.

Methyl 5-ethyl-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4c)

White solid; mp 85–87 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.32 (s, 1H), 7.18–7.13 (m, 4H), 7.02 (t, J = 6.0 Hz, 1H), 6.84 (d, J = 7.2 Hz, 2H), 6.61–6.58 (m, 1H), 4.16 (s, 2H), 3.54 (s, 3H), 2.56–2.50 (m, 2H), 2.24 (s, 3H), 1.14 (t, J = 7.6 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.80, 163.66, 162.58, 140.60, 138.01, 133.42, 131.24, 129.19, 128.51, 128.15, 127.95, 127.91, 125.55, 109.93, 83.41, 60.26, 51.82, 53.13, 28.18, 16.43 ppm; IR (KBr) ν: 3114, 2969, 1736, 1674, 1627, 1494, 1461, 1428, 1292, 1250, 1199, 1137, 833, 697 cm−1; HRMS (ESI) calcd for C22H22N2O3 ([M + H]+) 363.1709, found 363.1700.

Methyl 5-isopropyl-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4d)

White solid; mp 73–75 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.38 (s, 1H), 7.21–7.12 (m, 4H), 7.05 (d, J = 8.0 Hz, 1H), 6.83 (d, J = 6.4 Hz, 2H), 6.60 (d, J = 8.4 Hz, 1H), 4.18–4.16 (m, 2H), 3.54 (s, 3H), 2.84–2.81 (m, 1H), 2.27 (s, 3H), 1.16 (d, J = 6.8 Hz, 6H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.47, 163.17, 159.06, 158.68, 151.73, 143.07, 140.78, 132.74, 130.70, 128.75, 128.43, 128.02, 127.89, 126.17, 124.56, 110.24, 83.34, 60.17, 51.99, 35.54, 33.45, 24.60, 24.22 ppm; IR (KBr) ν: 3442, 1709, 1491, 1438, 1234, 1138, 1068, 953, 837, 722, 698, 516 cm−1; HRMS (ESI) calcd for C23H24N2O3 ([M + H]+) 377.1865, found 377.1855.

Methyl 5-methoxy-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4e)

White solid; mp 101–103 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.20–7.16 (m, 3H), 6.91–6.87 (m, 3H), 6.74–6.72 (m, 1H), 6.61 (d, J = 8.4 Hz, 1H), 4.13–4.05 (m, 2H), 3.69 (s, 3H), 3.55 (s, 3H), 2.19 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.28, 163.18, 155.04, 151.95, 135.66, 132.95, 130.94, 129.01, 128.15, 128.07, 127.55, 127.46, 114.68, 111.95, 110.21, 83.26, 59.81, 55.42, 51.33, 34.61 ppm; IR (KBr) ν: 3250, 2949, 2224, 1723, 1605, 1489, 1438, 1291, 1202, 1171, 1029, 760, 690 cm−1; HRMS (ESI) calcd for C21H20N2O4 ([M + H]+) 365.1501, found 365.1495.

Methyl 5-fluoro-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4f)

White solid; mp 90–92 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.62 (s, 1H), 7.19–7.15 (m, 4H), 7.01–6.96 (m, 1H), 6.89–6.73 (m, 2H), 6.72–6.70 (m, 1H), 4.12–4.04 (m, 2H), 3.59 (s, 3H), 2.19 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.808, 175.795, 163.50, 159.72, 157.35, 151.93, 139.21, 139.19, 133.20, 131.64, 129.98, 129.91, 128.60, 128.08, 127.83, 116.61, 116.38, 113.74, 113.50, 111.22, 111.15, 83.64, 83.62, 79.72, 60.23, 51.84, 35.05 ppm; IR (KBr) ν: 3262, 1724, 1629, 1485, 1441, 1281, 1236, 1185, 1135, 698 cm−1; HRMS (ESI) calcd for C20H17FN2O3 ([M + H]+) 353.1301, found 353.1293.

Methyl 5-chloro-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4g)

White solid; mp 89–90 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.52 (s, 1H), 7.33 (d, J = 2.4 Hz, 1H), 7.22–7.18 (m, 4H), 6.88–6.86 (m, 2H), 6.68 (d, J = 8.0 Hz, 1H), 4.13–4.04 (m, 2H), 3.54 (s, 3H), 2.18 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.62, 163.46, 151.57, 141.75, 133.12, 131.75, 130.18, 130.08, 128.70, 128.15, 127.80, 126.55, 126.07, 111.73, 83.39, 60.27, 51.89, 35.10 ppm; IR (KBr) ν: 3438, 1725, 1618, 1474, 1437, 1228, 1183, 698 cm−1; HRMS (ESI) calcd for C20H17ClN2O3 ([M + H]+) 369.1006, found 369.1001.

Methyl 5-bromo-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4h)

White solid; mp 91–92 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.59 (s, 1H), 7.47 (d, J = 5.6 Hz, 1H), 7.37–7.34 (m, 1H), 7.21–7.18 (m, 3H), 6.88–6.86 (m, 2H), 6.67 (d, J = 8.4 Hz, 1H), 4.17–4.07 (m, 2H), 3.54 (s, 3H), 2.21 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.99, 163.29, 158.99, 151.16, 142.21, 133.18, 132.84, 131.55, 130.44, 129.79, 128.93, 128.81, 128.20, 127.81, 114.31, 112.39, 83.25, 60.27, 51.94, 35.26 ppm; IR (KBr) ν: 3442, 1736, 1671, 1618, 1474, 1438, 1138, 1077, 838, 721, 696, 537 cm−1; HRMS (ESI) calcd for C20H17BrN2O3 ([M + H]+) 413.0501, found 413.0492.

Methyl 5-iodo-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4i)

Gray solid; mp 105–106 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.51 (s, 1H), 7.55 (s, 1H), 7.51–7.48 (m, 1H), 7.20–7.16 (m, 3H), 6.87–6.84 (m, 2H), 6.55 (d, J = 8.4 Hz, 1H), 4.12–4.03 (m, 2H), 3.53 (s, 3H), 2.18 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.12, 163.44, 151.48, 142.64, 138.75, 134.31, 133.06, 131.66, 130.57, 130.44, 128.74, 128.16, 127.81, 127.46, 112.76, 85.38, 83.13, 60.29, 51.91, 35.15 ppm; IR (KBr) ν: 3538, 3405, 3314, 1726, 1701, 1468, 1444, 1427, 1239, 1183, 1146, 1122, 694 cm−1; HRMS (ESI) calcd for C20H17IN2O3 ([M + H]+) 461.0362, found 461.0355.

Methyl 1′,7-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4j)

Yellow solid; mp 83–85 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.57 (s, 1H), 7.20–7.12 (m, 4H), 7.02–7.00 (m, 1H), 6.92–6.84 (m, 3H), 4.16 (s, 2H), 3.54 (s, 3H), 2.25 (d, J = 10 Hz, 3H), 2.07 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.91, 163.16, 159.04, 151.48, 141.63, 132.65, 132.14, 130.69, 128.87, 128.14, 127.88, 125.62, 123.88, 122.68, 119.91, 83.18, 60.09, 52.00, 35.43, 16.58 ppm; IR (KBr) ν: 3439, 1678, 1626, 1604, 1439, 1137, 1072, 989, 860, 545 cm−1; HRMS (ESI) calcd for C21H20N2O3 ([M + H]+) 349.1552, found 349.1546.

Methyl 7-fluoro-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4k)

White solid; mp 62–63 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.96 (s, 1H), 7.19–6.98 (m, 6H), 6.86 (d, J = 7.6 Hz, 2H), 4.10 (s, 2H), 3.58 (s, 3H), 2.19 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.74, 163.51, 151.86, 147.75, 145.33, 133.10, 131.66, 131.02, 130.98, 129.96, 129.83, 128.69, 128.10, 127.80, 123.41, 123.36, 122.23, 122.20, 117.20, 117.03, 83.46, 83.44, 79.59, 60.21, 51.87, 35.06 ppm; IR (KBr) ν: 3538, 3230, 2955, 1719, 1654, 1492, 1259, 1231, 1195, 1132, 799 cm−1; HRMS (ESI) calcd for C20H17FN2O3 ([M + H]+) 353.1301, found 353.1293.

Methyl 6-bromo-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4l)

White solid; mp 89–90 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.55 (s, 1H), 7.25–7.13 (m, 5H), 6.86–6.83 (m, 3H), 4.13–4.06 (m, 2H), 3.54 (s, 3H), 2.20 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.61, 172.25, 162.08, 159.06, 148.28, 142.86, 132.21, 131.65, 130.43, 129.49, 129.30, 128.40, 128.16, 127.97, 127.81, 126.98, 123.64, 123.10, 111.14, 82.96, 77.99, 52.45, 51.92, 51.90, 35.07 ppm; IR (KBr) ν: 3435, 1678, 1621, 1473, 1438, 1138, 1974, 989, 860, 545 cm−1; HRMS (ESI) calcd for C20H17BrN2O3 ([M + H]+) 413.0501, found 413.0498.

Methyl 1,1′-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4m)

White solid; mp 122–124 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.32 (d, J = 7.6 Hz, 1H), 7.27 (t, J = 7.2 Hz, 1H), 7.16–7.11 (m, 3H), 7.05 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.79 (d, J = 6.4 Hz, 2H), 4.10 (s, 2H), 3.54 (s, 3H), 3.01 (s, 3H), 2.12 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.08, 163.53, 152.25, 144.27, 133.15, 131.45, 130.21, 128.57, 128.02, 127.71, 127.29, 125.73, 123.15, 109.15, 82.90, 60.27, 51.90, 35.05, 26.34 ppm; IR (KBr) ν: 3435, 1729, 1709, 1611, 1468, 1434, 1366, 1341, 1301, 1288, 1169, 1125, 1078, 983, 738, 699 cm−1; HRMS (ESI) calcd for C22H22N2O4 ([M + H]+) 379.1658, found 379.1648.

Methyl 5-ethyl-1,1′-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4n)

White solid; mp 97–99 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.16–7.07 (m, 5H), 6.78 (t, J = 5.6 Hz, 3H), 4.09 (s, 2H), 3.54 (s, 3H), 2.97 (s, 3H), 2.58–2.52 (m, 2H), 2.12 (s, 3H), 1.14 (t, J = 7.6 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 174.02, 163.57, 152.40, 142.08, 138.81, 133.19, 131.35, 129.23, 128.55, 127.96, 127.73, 127.32, 127.22, 125.23, 108.91, 83.05, 60.29, 51.87, 35.11, 28.17, 26.33, 16.47 ppm; IR (KBr) ν: 3435, 2947, 1707, 1618, 1599, 1496, 1442, 1238, 1192, 1074, 1037, 696 cm−1; HRMS (ESI) calcd for C23H24N2O3 ([M + H]+) 377.1865, found 377.1863.

Methyl 5-methoxy-1,1′-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4o)

Yellow solid; mp 97–98 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.15–7.11 (m, 3H), 6.91 (s, 1H), 6.83–6.79 (m, 4H), 4.14–4.05 (m, 2H), 3.71 (s, 3H), 3.53 (s, 3H), 2.98 (s, 3H), 2.13 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 173.76, 163.53, 156.05, 152.24, 137.62, 133.19, 131.48, 128.71, 128.57, 128.03, 127.75, 114.76, 112.37, 109.66, 83.28, 60.28, 55.94, 51.88, 35.05, 26.39 ppm; IR (KBr) ν: 3392, 2919, 2848, 1724, 1645, 1469, 1435, 1382, 1357, 1287, 1234, 1035 cm−1; HRMS (ESI) calcd for C20H18N2O3 ([M + H]+) 335.1396, found 335.1389.

Methyl 2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4p)

White solid; mp 75–77 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.99 (s, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.32–7.18 (m, 4H), 7.09 (t, J = 7.6 Hz, 1H), 6.84–6.78 (m, 3H), 4.60–4.47 (m, 2H), 3.59 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.24, 163.31, 151.39, 144.57, 132.91, 131.50, 128.77, 128.43, 128.18, 127.97, 127.82, 126.69, 125.28, 122.94, 113.23, 82.90, 60.17, 51.93, 35.17 ppm; IR (KBr) ν: 3054, 2916, 2848, 1743, 1612, 1462, 1265, 1193, 704 cm−1; HRMS (ESI) calcd for C19H16N2O3 ([M + H]+) 321.1239, found 321.1235.

Methyl 5-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4q)

White solid; mp 51–53 °C.1H NMR (400 MHz, DMSO-d6) δ 10.85 (s, 1H), 7.44 (s, 1H), 7.29–7.20 (m, 3H), 7.13 (d, J = 8.0 Hz, 1H), 6.84–6.81 (m, 2H), 6.70 (d, J = 8.0 Hz, 1H), 4.61–4.43 (m, 2H), 3.59 (s, 3H), 2.28 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 172.91, 162.36, 148.77, 140.24, 136.72, 132.19, 132.15, 130.79, 129.53, 129.38, 128.36, 127.99, 127.11, 110.75, 78.38, 52.38, 52.28, 20.97 ppm; IR (KBr) ν: 3446, 1730, 1673, 1625, 1494, 1440, 1294, 1286, 1201, 1139, 698 cm−1; HRMS (ESI) calcd for C20H18N2O3 ([M + H]+) 335.1396, found 335.1391.

Methyl 5-fluoro-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4r)

Gray solid; mp 52–54 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.89 (s, 1H), 7.53–7.51 (m, 1H), 7.28–7.21 (m, 3H), 7.15–7.09 (m, 1H), 6.87 (d, J = 6.4 Hz, 2H), 6.78–6.74 (m, 1H), 4.57–4.41 (m, 2H), 3.58 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 173.67, 162.42, 159.65, 157.29, 148.63, 138.95, 138.93, 130.92, 130.40, 129.27, 128.38, 127.95, 118.20, 117.96, 114.59, 111.88, 111.81, 78.82, 52.65, 52.30 ppm; IR (KBr) ν: 3450, 1735, 1707, 1664, 1490, 1441, 1308, 1244, 1190, 1146, 799, 724, 700, 597 cm−1; HRMS (ESI) calcd forC19H15FN2O3 ([M + H]+) 339.1145, found 339.1144.

Methyl 1′-ethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4s)

White solid; mp 84–55 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.35 (s, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.18–7.12 (m, 4H), 6.98 (t, J = 7.6 Hz, 1H), 6.84–6.82 (m, 2H), 6.68 (d, J = 7.6 Hz, 1H), 4.16–4.04 (m, 2H), 3.53 (s, 3H), 2.56–2.51 (m, 1H), 2.37–2.33 (m, 1H), 0.93 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 176.21, 163.65, 152.30, 142.70, 133.18, 130.84, 129.99, 128.54, 128.48, 127.94, 127.91, 126.08, 122.43, 110.16, 83.04, 58.00, 51.80, 43.36, 40.54, 40.33, 40.13, 39.91, 39.71, 39.49, 39.29, 14.30 ppm; IR (KBr) ν: 3247, 1724, 1617, 1519, 1470, 1442, 1372, 1318, 1281, 1211, 754, 697 cm−1; HRMS (ESI) calcd for C21H20N2O3 ([M + H]+) 349.1552, found 349.1543.

Methyl 1′-ethyl-5-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4t)

White solid; mp 67–69 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.23 (s, 1H), 7.19–7.14 (m, 4H), 6.98 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 6.4 Hz, 2H), 6.58 (d, J = 8.0 Hz, 1H), 4.16–4.04 (m, 2H), 3.55 (s, 3H), 2.54–2.50 (m, 1H), 2.39–2.34 (m, 1H), 2.25 (s, 3H), 0.95 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 176.22, 163.69, 152.35, 140.22, 133.20, 131.29, 130.69, 130.30, 128.52, 128.50, 127.94, 126.56, 109.90, 83.06, 58.02, 58.00, 51.79, 43.36, 21.06, 14.28 ppm; IR (KBr) ν: 3374, 1723, 1623, 1490, 1436, 1294, 1232, 1194, 1137, 697 cm−1; HRMS (ESI) calcd for C22H22N2O3 ([M + H]+) 363.1709, found 363.1695.

Methyl 1′-ethyl-5-fluoro-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4u)

White solid; mp 72–74 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.41 (s, 1H), 7.22–7.15 (m, 4H), 7.01–6.96 (m, 1H), 6.87–6.85 (m, 2H), 6.67–6.64 (m, 1H), 4.18 (d, J = 13.2 Hz, 1H), 4.05 (d, J = 12.8 Hz, 1H), 3.54 (s, 3H), 2.57 (m, 1H), 2.29 (m, 1H), 0.94 (t, J = 6.8 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 176.25, 163.51, 159.72, 157.35, 151.71, 138.83, 132.99, 131.18, 130.53, 130.46, 128.56, 128.03, 127.87, 127.80, 127.87, 116.55, 116.32, 113.72, 113.48, 110.07, 110.99, 83.38, 58.00, 51.81, 51.77, 43.38, 43.34, 14.27 ppm; IR (KBr) ν: 3241, 3058, 2972, 2949, 1724, 1628, 1521, 1483, 1372, 1236, 1184, 1074, 817, 800, 698, 594 cm−1; HRMS (ESI) calcd for C21H19FN2O3 ([M + H]+) 367.1458, found 367.1445.

Ethyl 1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4v)

White solid; mp 77–79 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.38 (s, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.18–7.13 (m, 4H), 6.99 (t, J = 7.2 Hz, 1H), 6.86 (d, J = 6.4 Hz, 2H), 6.69 (d, J = 8.0 Hz, 1H), 4.08 (s, 2H), 4.01–3.59 (m, 2H), 2.23 (s, 3H), 0.98 (t, J = 6.8 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.87, 163.24, 152.17, 142.88, 133.52, 131.81, 130.06, 128.44, 128.08, 127.92, 126.18, 122.47, 115.64, 110.19, 83.34, 60.38, 60.21, 35.09, 14.04 ppm; IR (KBr) ν: 3417, 2976, 2871, 2798, 1715, 1621, 1472, 1291, 1229, 1171, 1071, 1021, 750, 698, 614 cm−1; HRMS (ESI) calcd for C20H18N2O3 ([M + H]+) 335.1396, found 335.1389.

Ethyl 1′,5-dimethyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4w)

Gray solid; mp 73–74 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.27 (s, 1H), 7.19–7.13 (m, 4H), 6.98 (d, J = 7.6 Hz, 1H), 6.87 (t, J = 6.0 Hz, 2H), 6.59 (d, J = 8.0 Hz, 1H), 4.08 (s, 2H), 4.01–3.95 (m, 2H), 2.23 (s, 3H), 2.17 (s, 3H). 0.99 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.85, 163.29, 152.17, 140.41, 133.54, 131.70, 131.35, 130.33, 128.45, 128.18, 127.96, 127.91, 126.67, 115.64, 109.91, 83.38, 60.37, 60.26, 35.11, 21.03, 14.04 ppm; IR (KBr) ν: 3249, 2979, 1720, 1623, 1522, 1490, 1377, 1295, 1231, 1130, 1072, 697 cm−1; HRMS (ESI) calcd for C20H18N2O3 ([M + H]+) 335.1396, found 335.1389.

Ethyl 5-fluoro-1′-methyl-2-oxo-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrole]-4′-carboxylate (4x)

White solid; mp 66–67 °C. 1H NMR (400 MHz, DMSO-d6) δ 10.51 (s, 1H), 7.26–7.17 (m, 4H), 7.04–6.99 (m, 1H), 6.91–6.88 (m, 2H), 6.71–0.68 (m, 1H), 4.19–4.11 (m, 2H), 4.02–3.96 (m, 2H), 2.26 (s, 3H), 0.99 (t, J = 6.8 Hz, 3H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 175.31, 162.90, 159.77, 158.64, 157.40, 151.14, 139.10, 139.07, 133.01, 131.87, 129.08, 128.65, 128.06, 127.89, 117.01, 116.76, 114.06, 113.82, 111.31, 111.25, 83.61, 83.59, 60.53, 60.21, 35.25, 13.99 ppm; IR (KBr) ν: 3346, 1708, 1525, 1486, 1444, 1382, 1289, 1187, 1138, 801, 698 cm−1; HRMS (ESI) calcd for C21H19FN2O3 ([M + H]+) 367.1458, found 367.1453.

4′-Acetyl-1′-methyl-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrol]-2-one (4y)

White solid; mp 73–74 °C. 1H NMR (400 MHz, DMSO-d6): δ 10.30 (s, 1H), 7.34 (d, J = 7.2 Hz, 1H), 7.25–7.20 (m, 3H), 7.17–7.13 (m, 1H), 7.00–6.96 (m, 1H), 6.91–6.89 (m, 2H), 6.65 (d, J = 7.6 Hz, 1H), 4.05 (s, 2H), 2.18 (s, 3H), 1.75 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 196.07, 175.90, 151.14, 142.74, 140.71, 133.67, 130.06, 128.98, 128.56, 128.24, 127.91, 126.29, 122.43, 110.16, 84.35, 60.38, 35.24, 29.85 ppm; IR (KBr) ν: 3437, 1719, 1663, 1617, 1469, 1376, 1223, 1185, 751, 700 cm−1; HRMS (ESI) calcd for C20H18N2O2 ([M + H]+) 319.1447, found 319.1439.

4′-Acetyl-5-methyl-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrol]-2-one (4z)

White solid; mp 82–83 °C. 1H NMR (400 MHz, DMSO-d6): δ 10.19 (s, 1H), 7.24 (d, J = 6.0 Hz, 3H), 7.16 (s, 1H), 6.96 (d, J = 7.6 Hz, 1H), 6.91 (t, J = 6.0 Hz, 2H), 6.54 (d, J = 8.4 Hz, 1H), 4.05 (s, 2H), 2.25 (s, 3H), 2.17 (s, 3H), 1.74 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 196.09, 175.83, 151.24, 140.63, 140.31, 133.71, 131.27, 130.32, 128.98, 128.57, 128.27, 128.01, 126.80, 109.87, 84.41, 60.42, 35.28, 29.86, 21.08 ppm; IR (KBr) ν: 3404, 1720, 1663, 1624, 1491, 1383, 1296, 1233, 1200, 1121, 700 cm−1; HRMS (ESI) calcd for C21H20N2O2 ([M + H]+) 333.1603, found 333.1592.

4′-Acetyl-5-fluoro-3′-phenyl-1′,5′-dihydrospiro[indoline-3,2′-pyrrol]-2-one (4aa)

White solid; mp 78–79 °C. 1H NMR (400 MHz, DMSO-d6): δ 10.37 (s, 1H), 7.26 (d, J = 2.8 Hz, 4H), 6.98–6.95 (m, 3H), 6.65–6.62 (m, 1H), 4.07 (d, J = 5.2 Hz, 2H), 2.20 (s, 3H), 1.75 (s, 3H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 195.94, 175.92, 159.72, 157.35, 150.49, 140.91, 138.92, 138.91, 133.49, 129.84, 129.78, 129.06, 128.66, 128.21, 116.63, 116.40, 113.97, 113.73, 111.07, 110.99, 84.72, 60.41, 35.23, 29.87 ppm; IR (KBr) ν: 3438, 1719, 1664, 1485, 1443, 1382, 1283, 1211, 1185, 1211, 1074, 801, 701, 596 cm−1; HRMS (ESI) calcd for C20H17FN2O2 ([M + H]+) 337.1352, found 337.1350.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 21172001, 21372008).

Notes and references

  1. (a) R. Rios, Chem. Soc. Rev., 2012, 41, 1060 RSC; (b) V. A. D'yakonov, O. A. Trapeznikova, A. de Meijere and U. M. Dzhemilev, Chem. Rev., 2014, 114, 5775 CrossRef PubMed; (c) R. Dalpozzo, G. Bartoli and G. Bencivenni, Chem. Soc. Rev., 2012, 41, 7247 RSC; (d) J. Zhang, J. Sun and C.-G. Yan, RSC Adv., 2015, 5, 82324 RSC.
  2. For some reviews, see: (a) F. Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381 CrossRef CAS; (b) J. E. M. N. Klein and R. J. K. Taylor, Eur. J. Org. Chem., 2011, 6821 CrossRef CAS; (c) K. Shen, X. Liu, L. Lin and X. Feng, Chem. Sci., 2012, 3, 327 RSC; (d) X.-W. Dou and Y.-X. Lu, Chem.–Eur. J., 2012, 18, 8315 CrossRef CAS PubMed; (e) G. S. Singh and Z. Y. Desta, Chem. Rev., 2012, 112, 6104 CrossRef CAS PubMed; (f) L. Hong and R. Wang, Adv. Synth. Catal., 2013, 355, 1023 CrossRef CAS; (g) D. Cheng, Y. Ishihara, B. Tan and C. F. Barbas III, ACS Catal., 2014, 4, 743 CrossRef CAS; (h) L. Chen, X.-P. Yin, C.-H. Wang and J. Zhou, Org. Biomol. Chem., 2014, 12, 6033 RSC.
  3. D. Theodorescu, M. F. Wempe, D. Ross, S. Meroueh, M. A. Chwartz and P. Reigan, PCT Int. Appl., 2013 Search PubMed , WO 2013096820A1 0130627.
  4. P. Pardasani, R. T. Pardasani, V. Chaturvedi and A. Saxena, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 2003, 42, 412 Search PubMed.
  5. K. Ding, Y.-P. Lu, Z. Nikolovska-Coleska, G.-P. Wang, S. Qiu, S. Shangary, W. Gao, D.-G. Qin, J. Stuckey, K. Krajewski, P. P. Roller and S.-M. Wang, J. Med. Chem., 2006, 49, 3432 CrossRef CAS PubMed.
  6. N. Karal, O. Guzel, N. Ozsoy, S. Ozbey and A. Salman, Eur. J. Med. Chem., 2010, 45, 1068 CrossRef PubMed.
  7. (a) S.-Y. Li, J. M. Finefield, J. D. Sunderhaus, T. J. Mcafoos, R. M. Williams and D. H. Sherman, J. Am. Chem. Soc., 2012, 134, 788 CrossRef CAS PubMed; (b) K. Karthikeyan, P. M. Sivakumar, M. Doble and P. T. Perumal, Eur. J. Med. Chem., 2010, 45, 3446 CrossRef CAS PubMed.
  8. W. Tan, X.-T. Zhu, S. Zhang, G.-J. Xing, R.-Y. Zhu and F. Shi, RSC Adv., 2013, 3, 10875 RSC.
  9. (a) S. L. Zhu, S. J. Jia and Y. Zhang, Tetrahedron, 2007, 63, 9365 CrossRef CAS; (b) A. A. Mohammadi, M. Dabiri and H. Qaraat, Tetrahedron, 2009, 65, 3804 CrossRef CAS; (c) Y. Han, Q. Wu, J. Sun and C.-G. Yan, Tetrahedron, 2012, 68, 8539 CrossRef CAS; (d) C.-S. Wang, R.-Y. Zhu, J. Zheng, F. Shi and S.-J. Tu, J. Org. Chem., 2015, 80, 512 CrossRef CAS PubMed; (e) N. Sharma, Z. Li, U. K. Sharma and E. V. Van der Eycken, Org. Lett., 2014, 16, 3884 CrossRef CAS PubMed.
  10. For racemic approaches, see: (a) R. Sarkar and C. Mukhopadhyay, Tetrahedron Lett., 2013, 54, 3706 CrossRef CAS; (b) T. Rajasekaran, G. Karthik, B. Sridhar and R. B. V. Subba, Org. Lett., 2013, 15, 1512 CrossRef CAS PubMed; (c) Y. Han, Q. Wu, J. Sun and C.-G. Yan, Tetrahedron, 2012, 68, 539 Search PubMed.
  11. A. Dandia, A. K. Jain and A. K. Laxkar, Tetrahedron Lett., 2013, 54, 3929 CrossRef CAS.
  12. (a) F. Shi, R.-Y. Zhu, X. Liang and S.-J. Tu, Adv. Synth. Catal., 2013, 355, 2447 CrossRef CAS; (b) D. Du, Y. Jiang, Q. Xu and M. Shi, Adv. Synth. Catal., 2013, 355, 2249 CrossRef CAS.
  13. (a) S. Maiti, S. Biswas and U. Jana, J. Org. Chem., 2010, 75, 1674 CrossRef CAS PubMed; (b) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439 CrossRef CAS PubMed; (c) Y. L. Gu, Green Chem., 2012, 14, 2091 RSC; (d) A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168 CrossRef CAS; (e) C. F. Gers, J. Nordmann, C. Kumru, W. Frank and T. J. J. Muller, J. Org. Chem., 2014, 79, 3296 CrossRef CAS PubMed; (f) S. Kundu and B. Basu, RSC Adv., 2015, 5, 50178 RSC.
  14. (a) D. N. K. Reddy, K. B. Chandrasekhar, Y. S. S. Ganesh, B. S. Kumar, R. Adepu and M. Pal, Tetrahedron Lett., 2015, 56, 4586 CrossRef CAS; (b) S. Kumar, A. Patel and N. Ahmed, RSC Adv., 2015, 5, 93067 RSC.
  15. (a) X.-W. He, Y.-J. Shang, Z.-Y. Yu, M. Fang, Y. Zhou, G. Han and F.-L. Wu, J. Org. Chem., 2014, 79, 8882 CrossRef CAS PubMed; (b) X.-W. He, Y.-J. Shang, Y. Zhou, Z.-Y. Yu, G. Han, W.-J. Jin and J.-J. Chen, Tetrahedron, 2015, 71, 863 CrossRef CAS; (c) J.-P. Wu, Y.-J. Shang, C.-E. Wang, X.-W. He, Z.-L. Yan, M.-M. Hu and F.-Y. Zhou, RSC Adv., 2013, 3, 4643 RSC; (d) Y.-J. Shang, K. Ju, X.-W. He, J.-S. Hu, S.-Y. Yu, M. Zhang, K.-S. Liao, L.-F. Wang and P. Zhang, J. Org. Chem., 2010, 75, 5743 CrossRef CAS PubMed.
  16. CCDC 1436295 contains the ESI crystallographic data for this paper.
  17. (a) A. Dandia, R. Singh, S. Khan, S. Kumari and P. Soni, Tetrahedron Lett., 2015, 56, 4438 CrossRef CAS; (b) J. Wu, W. Li, L. Chen, S. Chu, C. Zhao, T. Wei, S. Yang and X. Li, Chin. J. Org. Chem., 2012, 32, 2141 CrossRef CAS; (c) R. A. Maurya, R. Nayak, C. N. Reddy, J. S. Kapure, J. B. Nanubolu, K. K. Singarapu, M. Ajithad and A. Kamal, RSC Adv., 2014, 4, 32303 RSC.

Footnote

Electronic supplementary information (ESI) available: 1H and 13C NMR spectra of all products, and crystal data and structure refinement for 4b. CCDC 1436295. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra23860a

This journal is © The Royal Society of Chemistry 2016
Click here to see how this site uses Cookies. View our privacy policy here.