Issue 2, 2016

Fostering protein–calixarene interactions: from molecular recognition to sensing

Abstract

Two isomeric bis-calixarene-carbazole conjugates (CCC-1 and CCC-2) endowed with carboxylic acid functions at their lower rims have been found to display a high sensing ability (KSV up to 6 × 107 M−1) and selectivity toward cytochrome c, a multi-functional protein, in an aqueous-based medium. After targeting basic amino acid residues on the protein surface residing near the prosthetic heme group through electrostatic and hydrophobic interactions, a rapid photoinduced electron transfer ensues between the integrated transduction element (aryleneethynylene chromophore) of CCCs and the iron-oxidized heme of cytochrome c, enabling direct detection of the protein at nanomolar levels. Our results show that CCCs are capable of efficiently discriminating heme proteins (cytochrome c vs. myoglobin) and non-heme proteins (lysozyme) in an aqueous medium. Studies performed in two solvent systems (organic and aqueous) strongly suggest that in an organic medium a Förster-type resonance energy transfer is responsible for the observed reduction in CCCs emission upon contact with heme proteins while in an aqueous medium a specific photoinduced electron transfer mechanism prevails.

Graphical abstract: Fostering protein–calixarene interactions: from molecular recognition to sensing

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2015
Accepted
15 Dec 2015
First published
18 Dec 2015

RSC Adv., 2016,6, 1659-1669

Fostering protein–calixarene interactions: from molecular recognition to sensing

J. V. Prata and P. D. Barata, RSC Adv., 2016, 6, 1659 DOI: 10.1039/C5RA19887A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements