Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix†
Abstract
Ni(core)@NiO(shell) nanoparticles (NPs) were synthesized through the pyrolysis of an inorganic precursor taking place within the pores of an active carbon matrix at different temperatures between 673 and 1173 K, and a subsequent oxidation in air. For the lowest temperature (673 K), the smallest average size of the NPs (9 nm) and the largest percentage of NiO (82%) are observed. Upon increasing the temperature up to 1173 K, an average diameter of 23 nm is observed while the NiO percentage decreases below 20%. We found that each NP consists of a Ni core surrounded by a structurally disordered NiO shell with a constant thickness of ∼2 nm, regardless of the core size. The spins inside the NiO shell freeze into a spin glass (SG)-like state below Tf ∼ 40 K. The magnetic exchange coupling between the Ni core and the NiO shell spins gives rise to the occurrence of the exchange bias (EB) effect, whose temperature dependence follows a universal exponential trend in all samples. The SG nature of the shell spins yields a vanishing EB above Tf. This is far below the Néel temperature of bulk antiferromagnetic NiO (TN ∼ 523 K) that usually determines the onset of the EB effect in Ni/NiO interfaces.