Room-temperature palladium-catalysed Suzuki–Miyaura coupling of arylboric acid with aryl chlorides

Dan Wang a, Hong-Guan Chena, Xin-Chuan Tiana, Xiao-Xia Lianga, Feng-Zhen Chenb and Feng Gao*a
aDepartment of Chinese Traditional Herbal, Agronomy College, Sichuan Agricultural University, Chengdu 611130, P. R. China. E-mail: gaofeng@sicau.edu.cn
bSchool of Bioengineering, Chengdu University, Chengdu 610106, P. R.China

Received 24th September 2015 , Accepted 7th December 2015

First published on 9th December 2015


Abstract

An efficient room-temperature Pd-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl-boronic acids with aryl chlorides is communicated here. The Pd(OAc)2/NiXantphos catalyst system enables the coupling reaction at room temperature in good to excellent yields (average yield >90%).


The construction of C–C bonds is considered to be an important issue in transition-metal catalyzed organic reactions.1 With the discovery of the Suzuki–Miyaura cross-coupling of aryl-boronic acids with aryl halides in 1981,2 a convenient and selective sp2 C–C bond forming method was established.3 As boron is similar to carbon in size and electronegativity, both boronic acids and boronate esters are highly nucleophilic, and display excellent and broad functional group tolerance. In addition, structurally diverse biaryl motifs obtained from Suzuki reactions are important structural elements of a large number of natural products, pharmaceuticals, agrochemicals4 as well as many bioactive polymers.5 It is for these reasons that the Suzuki reaction has emerged as a favorite tool in both industrial and academic fields.

Although aryl chlorides have been proved to be inactive in Suzuki reaction since the very beginning, numerous low-cost compounds available in this class still attract many researchers' attention.6 To address this issue, high temperature (>100 °C), along with commercial metal/ligand, was generally employed in early protocols,7 which inevitably limited the substrate scope with heat-intolerant heterocyclic aryl halides, such as furans and thiophenes (Scheme 1A); later, to achieve room-temperature Suzuki coupling reaction with aryl chlorides, some novel ligands/pre-catalysts were successfully designed and prepared.8 However, these studies shared drawbacks like difficult preparation procedures for the ligands/pre-catalysts (Scheme 1B). It is worth mentioning that some ligand-free researches were highlighted as they achieved room temperature Suzuki reactions in PEG. But unfortunately, they were all confined to phenyl-boronic acid.6,9 Therefore, it is still practically and theoretically significant to develop novel synthetic method for room-temperature Suzuki–Miyaura cross-coupling of aryl chlorides.


image file: c5ra19790b-s1.tif
Scheme 1 Suzuki–Miyaura coupling of aryl chlorides.

van Leeuwen's NiXantphos (see Scheme 1 for structure) has been proved to be an efficient ligand in sp3–sp2 C–C formation by promoting several arylation reactions,10 yet its application in sp2–sp2 has not been reported. In our preliminary work, we have disclosed the first direct 2-arylation of benzoxazoles catalyzed by Pd/Nixantphos at room temperature.11 Recently, Zhang reported that aryl chlorides could be activated by NiXantphos at room temperature.12 So we surmised that NiXantphos might be active in room-temperature Suzuki cross coupling of aryl chlorides. Here, we are communicating an efficient Pd(OAc)2/NiXantphos-catalyzed room-temperature Suzuki–Miyaura coupling of aryl-boronic acids with aryl chlorides (Scheme 1C).

Our research started from the screening of bases (KF, CsCO3, K2HPO3, K2CO3, KHCO3, KH2PO3), adopting Pd(OAc)2/NiXantphos-based catalytic system with H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) as solvent (Table 1). Results showed that with K2CO3 as base, 4-tert-butylphenylboronic acid 1a (1.2 equiv.) and 1-chloro-4-methylbenzene 2a (1.0 equiv.) could access to 4-tert-butyl-4′-methylbiphenyl 3a in 88% yield after 3 h (Table 1, entry 3). And when the reaction time was prolonged to 6 h, the conversion rate was significantly improved. Then the scope of solvents (H2O/THF, H2O/PhH, H2O/DME, H2O/1,4-dioxane) were tested adopting K2CO3 as base at room temperature for 6 h. With H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) as solvent, 3a was afforded in near quantitative yield after 6 h (Table 1, entry 9).

Table 1 Optimization of Suzuki coupling of 4-tert-butylphenylboronic acid (1a) with 1-chloro-4-methylbenzene (2a)a

image file: c5ra19790b-u1.tif

Entry Base Solvent (ratio) Time Yieldb (%)
a Reactions performed using 1.2 equiv. of 1a, 1.0 equiv. of 2a and 2.0 equiv. of base on a 0.2 mmol scale.b Isolated yields.
1 KF H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 3 h 58
2 CsCO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 3 h 55
3 K2CO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 3 h 88
4 KF H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 60
5 CsCO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 80
6 K2HPO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 85
7 KHCO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 90
8 KH2PO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 90
9 K2CO3 H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 95
10 K2CO3 H2O/PhH (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 75
11 K2CO3 H2O/DME (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 92
12 K2CO3 H2O/dioxane (1[thin space (1/6-em)]:[thin space (1/6-em)]5) 6 h 90


The substrate scope of aryl chlorides 2a–n (1.0 equiv.) with 4-tert-butylphenylboronic acid 1a (1.2 equiv.) was investigated (Scheme 2) under the optimized reaction conditions as Pd(OAc)2 (2 mol%), NiXantphos (3 mol%), K2CO3 (2.0 equiv.) in H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) at room temperature for 6 h, and gave corresponding products 3a–n in yields from 65% to 99%. In general, the reaction could be facilitated by strongly electron-withdrawing groups like tri-fluoromethyl, cyano group, nitro group, etc. (Scheme 2, 3e, 3i, 3j, 3k). As is shown in Scheme 2, heteroaryl compounds, mainly 2-phenylpyridines, account for half of the products. It is worth to mention that 2-phenylpyridine derivatives were widely reported to show antitumor and anticancer activity.13 Since our group has been conducting research on the design and synthesis of anti-cancer molecules with simple structures,14 2-chloro pyridines were preferred substrates in this work.


image file: c5ra19790b-s2.tif
Scheme 2 Scope of aryl chloride in the room-temperature Suzuki coupling with 4-tert-butylphenylboronic acid (1a).

2-Phenyl-5-(tri-fluoromethyl) pyridine derivatives were reported to have various bioactivities,15 like g-secretase modulation, antimalarial activity, P2X3 receptor antagonism, glucagon receptor antagonism, etc. Therefore, it was chosen in the scope investigations of aryl-boronic acids 1b–o (1.2 equiv.) (Scheme 3) under the optimized reaction conditions as Pd(OAc)2 (2 mol%), NiXantphos (3 mol%), K2CO3 (2 equiv.) in H2O/THF (1[thin space (1/6-em)]:[thin space (1/6-em)]5) at room temperature for 6 h, and gave corresponding products 4a–n in yields from 70% to 96%. It could be seen that the reaction could be suppressed when possessing substrates with strongly electron-donating groups like ether group (Scheme 3, 4e). Among the coupling products, 4m and 4n were afforded from 2-furanboronic acid 1n and 2-thiophenylboric acid 1o with 2k, respectively, proving the successful application of heteroarylboronic acids.


image file: c5ra19790b-s3.tif
Scheme 3 Scope of aryl boronic acid in the room-temperature Suzuki coupling with 2-chloro-5-(trifluoromethyl) pyridine (2k).

Para, meta and ortho substituents in aryl chlorides were all well tolerated in the room-temperature Suzuki coupling with 4-tert-butylphenylboronic acid, providing products in yields from 65% to 99%. Similarly, para and meta substituents in aryl boronic acids were well tolerable, and afforded products in yields from 70% to 96%.

We also evaluated the scalability of this method by performing the coupling of 3-chloropyridine 2m with 4-methoxyphenylboronic acid 1f on gram scale (Scheme 4). The coupling product, 3-(4-methoxyphenyl)pyridine 5a was isolated in 60% yield. This yield is relatively high, proving that the Pd(OAc)2/NiXantphos based catalyst could stay active in room-temperature Suzuki cross coupling of aryl chlorides without chelating with nitrogen atom in pyridine.


image file: c5ra19790b-s4.tif
Scheme 4 Room-temperature Suzuki coupling of 3-chloropyridine with 4-methoxyphenylboronic acid on gram scale.

In summary, Pd(OAc)2/Nixantphos-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl-boronic acids with aryl chlorides were realized at room temperature in high yields (average yield >90%). In our method, a broad range of substrates could be adopted to afford diverse products with minor limitations. The success of this method attributes to the application of commercially available ligand NiXantphos. Next, we will continue our exploration for cross coupling reaction of aryl chlorides using NiXantphos as ligand.

Acknowledgements

We thank the NSFC (no. 31570341) and Key Technology Support Program of Scihuan Provice, China (no. 2015SZ0105) for financial support.

Notes and references

  1. K. Sambasivarao, L. Kakali and K. Dhurke, Tetrahedron, 2002, 58, 9633 CrossRef.
  2. N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 1981, 11, 513 CrossRef CAS.
  3. (a) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed., 2005, 44, 4442 CrossRef CAS PubMed; (b) C. You, P. Hui, Y. X. Pi, T. Meng, Z. Y. Lian, M. Q. Yan, Y. Liu, S. H. Liu and G. A. Yu, Org. Biomol. Chem., 2015, 13, 3236 RSC.
  4. (a) A. Suzuki, J. Org. Chem., 1999, 576, 147 CrossRef CAS; (b) L. A. Thompson and J. A. Ellman, Chem. Rev., 1996, 96, 555 CrossRef CAS PubMed; (c) S. P. Stanforth, Tetrahedron, 1998, 54, 263 CrossRef CAS; (d) M. C. Kozlowski, B. J. Morgan and E. C. Linton, Chem. Soc. Rev., 2009, 38, 3193 RSC.
  5. (a) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev., 2003, 103, 893 CrossRef CAS PubMed; (b) T. Guo, A. E. P. Adang, R. E. Dolle, G. Dong, D. Fitzpatrick, P. Geng, K. K. Ho, S. G. Kultgen, R. Liu, E. McDonald, B. F. McGuinness, K. W. Saionz, K. J. Valenzano, N. C. R. van Straten, D. Xie and M. L. Webb, Bioorg. Med. Chem. Lett., 2004, 14, 1713 CrossRef CAS PubMed; (c) R. Faghih, W. Dwight, J. B. Pan, G. B. Fox, K. M. Krueger, T. A. Esbenshade, J. M. McVey, K. Marsh, Y. L. Bennani and A. A. Hancock, Bioorg. Med. Chem. Lett., 2003, 13, 1325 CrossRef CAS PubMed; (d) E. A. Jefferson, P. P. Seth, D. E. Robinson, D. K. Winter, A. Miyaji, L. M. Risen, S. A. Osgood, M. Bertrand and E. E. Swayze, Bioorg. Med. Chem. Lett., 2004, 14, 5257 CrossRef CAS PubMed; (e) G. T. Wang, S. Wang, R. Gentles, T. Sowin, S. Leitza, E. B. Reilly and T. W. von Geldern, Bioorg. Med. Chem. Lett., 2005, 15, 195 CrossRef CAS PubMed.
  6. L. Yin, Z. Zhang and Y. Wang, Tetrahedron, 2006, 62, 9359 CrossRef CAS.
  7. (a) M. B. Mitchell and P. J. Wallbank, Tetrahedron Lett., 1991, 32, 2273 CrossRef CAS; (b) W. Shen, Tetrahedron Lett., 1997, 38, 5575 CrossRef CAS; (c) A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 1998, 37, 3387 CrossRef CAS; (d) A. Zapf and M. Beller, Chem.–Eur. J., 2000, 6, 1830 CrossRef CAS PubMed; (e) A. Zapf, A. Ehrentraut and M. Beller, Angew. Chem., Int. Ed., 2000, 39, 4153 CrossRef CAS; (f) J. H. Li and W. J. Liu, Org. Lett., 2004, 6, 2809 CrossRef CAS PubMed; (g) R. K. Arvela and N. E. Leadbeater, Org. Lett., 2005, 7, 2101 CrossRef CAS PubMed.
  8. (a) L. Botella and C. Nájera, Angew. Chem., Int. Ed., 2002, 41, 179 CrossRef CAS; (b) C. W. K. Gstöttmayr, V. P. W. Böhm, E. Herdtweck, M. Grosche and W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1363 CrossRef; (c) O. Navarro, R. A. Kelly and S. P. Nolan, J. Am. Chem. Soc., 2003, 125, 16194 CrossRef CAS PubMed; (d) N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott and S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101 CrossRef CAS PubMed; (e) T. Kinzel, Y. Zhang and S. L. Buchwald, J. Am. Chem. Soc., 2010, 132, 14073 CrossRef CAS PubMed; (f) M. T. Chen, D. A. Vicic, M. L. Turner and O. Navarro, Organometallics, 2011, 30, 5052 CrossRef CAS; (g) F. Rajabi and W. R. Thiel, Adv. Synth. Catal., 2014, 356, 1873 CrossRef CAS; (h) J.-Y. Lee, D. Ghosh, J.-Y. Lee, S.-S. Wu, C.-H. Hu, S.-D. Liu and H. M. Lee, Organometallics, 2014, 33, 6481 CrossRef CAS; (i) R. Ghosh, N. N. Adarsh and A. Sarkar, J. Org. Chem., 2010, 75, 5320 CrossRef CAS PubMed; (j) T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685 Search PubMed; (k) D. Liu, W. Gao, Q. Dai and X. Zhang, Org. Lett., 2005, 7, 4907 CrossRef CAS PubMed; (l) C. M. So, C. C. Yeung, C. P. Lau and F. Y. Kwong, J. Org. Chem., 2008, 73, 7803 CrossRef CAS PubMed; (m) S. R. Dubbaka and P. Vogel, Org. Lett., 2004, 6, 95 CrossRef CAS PubMed; (n) D. W. Old, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc., 1998, 120, 9722 CrossRef CAS; (o) A. Konovets, A. Penciu, E. Framery, N. Percina, C. G. Henry and D. Sinou, Tetrahedron Lett., 2005, 46, 3205 CrossRef CAS; (p) M. Ueda, M. Nishimura and N. Miyaura, Synlett, 2000, 0856 CAS; (q) C. Zhang, J. Huang, M. L. Trudell and S. P. Nolan, J. Org. Chem., 1999, 64, 3804–3805 CrossRef CAS; (r) A. Kumar, G. K. Rao, F. Saleem, R. Kumar and A. K. Singh, J. Hazard. Mater., 2014, 269, 9 CrossRef CAS PubMed; (s) S. Li, Y. Lin, J. Cao and S. Zhang, J. Org. Chem., 2007, 72, 4067 CrossRef CAS PubMed; (t) G. A. Molander and B. Biolatto, J. Org. Chem., 2003, 68, 4302 CrossRef CAS PubMed; (u) X. Bei, H. W. Turner, W. H. Weinberg and A. S. Guram, J. Org. Chem., 1999, 64, 6797 CrossRef CAS PubMed; (v) K. W. Anderson and S. L. Buchwald, Angew. Chem., Int. Ed., 2005, 44, 6173 CrossRef CAS PubMed; (w) K. L. Billingsley, K. W. Anderson and S. L. Buchwald, Angew. Chem., Int. Ed., 2006, 45, 3484 CrossRef CAS PubMed.
  9. (a) W. H. Han, , C. Liu and Z. L. Jin, Org. Lett., 2007, 9, 4005 CrossRef CAS PubMed; (b) W. H. Han, , C. Liu and Z. L. Jin, Adv. Synth. Catal., 2008, 350, 501 CrossRef CAS.
  10. (a) T. Jia, A. Bellomo, K. E. L. Baina, S. D. Dreher and P. J. Walsh, J. Am. Chem. Soc., 2013, 135, 3740 CrossRef CAS PubMed; (b) J. Zhang, A. Bellomo, A. D. Creamer, S. D. Dreher and P. J. Walsh, J. Am. Chem. Soc., 2012, 134, 13765 CrossRef CAS PubMed; (c) S.-C. Sha, J. Zhang, P. J. Carroll and P. J. Walsh, J. Am. Chem. Soc., 2013, 135, 17602 CrossRef CAS PubMed; (d) A. Bellomo, J. Zhang, N. Trongsiriwata and P. J. Walsh, Chem. Sci., 2013, 4, 849 RSC; (e) M. Li, B. Yücel, J. Adrio, A. Bellomoa and P. J. Walsh, Chem. Sci., 2014, 5, 2383 RSC.
  11. F. Gao, B. S. Kim and P. J. Walsh, Chem. Commun., 2014, 50, 10661 RSC.
  12. J. Zhang, A. Bellomo, N. Trongsiriwat, T. Jia, P. J. Carroll, S. D. Dreher, M. T. Tudge, H. Yin, J. R. Robinson, E. J. Schelter and P. J. Walsh, J. Am. Chem. Soc., 2014, 136, 6276 CrossRef CAS PubMed.
  13. (a) R. Cao, J. Jia, X. Ma, M. Zhou and H. Fei, J. Med. Chem., 2013, 56, 3636 CrossRef CAS PubMed; (b) C. Gabbiani and L. Messori, Anti-Cancer Agents Med. Chem., 2011, 11, 929 CrossRef CAS; (c) S. F. Ralph, Curr. Top. Med. Chem., 2011, 11, 572 CrossRef CAS PubMed; (d) D. Fan, C. T. Yang, J. D. Ranford, J. J. Vittal and P. F. Lee, Dalton Trans., 2003, 17, 3376 RSC.
  14. X.-X. Chen, F. Gao, Q. Wang, X. Huang and D. Wang, Fitoterapia, 2014, 92, 111 CrossRef CAS PubMed.
  15. (a) S. Sato, S. Matsuda, C. Matsumura, M. Itotani, T. Shinohara, S. Fujita, Y. Sakurai, K. Tai, T. Fukushima, N. Kanemoto and T. Okamoto, WO2015/8872 A1, 2015; (b) G. D. Heffernan, D. P. Jacobus, K. W. Saionz, G. A. Schiehser, H.-M. Shieh and W. Zhao, US2014/135320 A1, 2014; (c) M. Mori, K. Fujii, M. Inui, T. Baba, Y. Onishi and A. Aoyagi, EP2700643 A1, 2014; (d) M. Mori, K. Fujii, M. Inui, T. Baba, Y. Onishi and A. Aoyagi, WO2012/144478 A1, 2012; (e) C. S. Burgey, Z. J. Deng, D. N. Nguyen, D. V. Paone, C. M. Potteiger and J. P. Vacca, WO2009/058298 A1, 2009; (f) C. Y. Ho, WO2009/052341 A1, 2009; (g) R. M. Kim, E. R. Parmee, Q. Tan, A. R. Lins, J. Chang and C.-M. Yang, WO2007/111864 A2, 2007.

Footnotes

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra19790b
D. W. and H. G. C. contributed equally.

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.