Issue 107, 2015

Mechanism of the Paal–Knorr reaction: the importance of water mediated hemialcohol pathway

Abstract

The Paal–Knorr synthesis of furan, pyrrole and thiophene rings is one of the most important methods of generating these very important heterocycles, but the mechanism of this reaction is not well understood. Though several mechanistic paths are suggested, the exact energy requirements of this reaction, the structural features of transition states associated with the cyclization step, have not been established, especially for furan and thiophene synthesis. In this work, we explore the mechanism of the Paal–Knorr method and establish the energy requirements, using quantum chemical methods. The Paal–Knorr reaction to give furans is endergonic by 3.7 kcal mol−1 whereas the same reaction is exergonic for pyrrole and thiophene generation by 16.4 and 15.9 kcal mol−1, using G2MP2 method. The cyclization step is associated with high energy barrier, however, explicit water participation reduces the barrier significantly. For example, under the neutral condition two water mediated pathways – (i) monoenol and (ii) hemiketal, are possible on the reaction leading to furan. The cyclization step in these two pathways require 28.9 and 27.1 kcal mol−1, respectively. The ring formation step becomes highly favorable in the presence of H3O+ with a barrier of only 11.5 kcal mol−1 (solvent phase) from the monoenol to dihydrofuran derivative and 5.5 kcal mol−1 (solvent phase) from hemiketal to dihydroxy dihydrofuran derivative. Similarly, a water mediated pathway involving the intermediacy of hemialcohols has been found to be energetically preferred mechanism for pyrrole and thiophene also.

Graphical abstract: Mechanism of the Paal–Knorr reaction: the importance of water mediated hemialcohol pathway

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2015
Accepted
09 Oct 2015
First published
12 Oct 2015

RSC Adv., 2015,5, 88353-88366

Author version available

Mechanism of the Paal–Knorr reaction: the importance of water mediated hemialcohol pathway

S. Abbat, D. Dhaked, M. Arfeen and P. V. Bharatam, RSC Adv., 2015, 5, 88353 DOI: 10.1039/C5RA16246G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements