Efficient synthesis of functionalized spiro[indoline-3,4′-pyridines] and spiro[indene-2,4′-pyridines] via a three-component reaction

Jing Zhang , Jing Sun and Chao-Guo Yan *
College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China. E-mail: cgyan@yzu.edu.cn; Fax: +86-514-87975244; Tel: +86-514-87975531

Received 30th July 2015 , Accepted 21st September 2015

First published on 24th September 2015


Abstract

The three-component reactions of α,β-unsaturated N-arylaldimines, dimethyl acetylenedicarboxylate (methyl propiolate) and isatylidene malononitriles in dry acetonitrile at room temperature afforded polysubstituted spiro[indoline-3,4′-pyridines] in good yields and with high diastereoselectivity. Under similar reaction conditions, the corresponding functionalized spiro[indene-2,4′-pyridines] were also obtained from the three-component reactions containing 2-(1,3-dioxo-1H-inden-2(3H)-ylidene)malononitrile.


Introduction

1,4-Dihydropyridines (1,4-DHPs) are well known heterocyclic scaffolds possessing a broad array of biological functions.1 1,4-Dihydropyridine derivatives such as felodipine, nicardipine, nifedipine have been frequently used in the treatment of cardiovascular disease and hypertension, as potent calcium channel antagonists, and agonists.2–5 Besides the valuable pharmaceutical profiles, 1,4-DHPs have also been known as useful building blocks in the synthesis of structurally attractive organic products such as fused and spiro polycyclic molecules.6–10 In the diverse polycyclic 1,4-DHPs, spiro[indoline-3,4′-pyridine] is now recognized as a privileged heterocyclic scaffold and attracts longlasting interest in organic synthesis, chemical biology and pharmaceutical chemistry.11–14 Over the last decade, multicomponent reactions have witnessed a burgeoning progress due to their privileged reaction efficiency, operation simplicity and molecular diversity.15,16 Practically, Nair17 and Shi18 reported that the cycloaddition reaction of Huisgen 1,4-dipoles generated from N-heterocyclic arenes and acetylenedicarboxylates with isatylidene malonitriles afforded spiro[indoline-3,2′-quinolizines] or spiro[indoline-3,2′-pyrido[2,1-a]isoquinolines] (eqn (1) in Scheme 1). Perumal19 and we20 successfully found that the in situ generated 1,3-dipoles from addition of arylamines to acetylenedicarboxylates also reacted with isatylidene malonitriles to give the corresponding spiro[indoline-3,4′-pyridine] derivatives (eqn (2) in Scheme 1). On the other hand, N-arylaldimines and its α,β-unsaturated derivatives reacted with dialkyl acetylenedicarboxylates to give analogous 1,4-dipoles, which were in turn strapped by carbonyl compounds such as aldehydes and isatins to give 1,3-oxazine derivatives.21,22 This interesting results showed that the 1,4-dipoles derived from reaction of N-arylaldimines and acetylenedicarboxylates have comparable reactivity to that of Huisgen 1,4-dipoles. In order to exploit the synthetic applications of the 1,4-dipoles derived from N-arylaldimines and acetylenedicarboxylates, herein we wish to report the three-component reaction of α,β-unsaturated N-arylaldimines, dialkyl acetylenedicarboxylates and isatylidene malononitrile and its derivatives for the convenient synthesis of polyfunctionalized spiro[indoline-3,4′-pyridines] (eqn (3) in Scheme 1).
image file: c5ra15139b-s1.tif
Scheme 1 Construction of spiro[indoline-3,4′-pyridine] via different reactions of isatylidene malononitrile.

Results and discussions

According to the previously established reaction procedure of three-component reaction of N-arylaldimines, acetylenedicarboxylates and isatins for the synthesis of spiro[indoline-3,6′-[1,3]oxazines],22a the three-component reaction of α,β-unsaturated N-arylaldimine, dimethyl acetylenedicarboxylate and isatylidene malononitriles was carried out in dry acetonitrile at room temperature. After workup, the expected polysubstituted 2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridines] 3a–3m were obtained in good yields (Table 1). The substituents on the substrates showed very little effect to the yields of the products. The structures of the obtained spiro[indoline-3,4′-pyridines] 3a–3m were fully characterized by IR, HRMS, 1H and 13C NMR spectra. Because the 2′-stylyl group and the phenyl group of oxindole moiety can exist in cis/trans-positions in the newly-formed dihyropyridyl ring, the obtained products 3a–3m might have cis/trans-configurations. 1H and 13C NMR spectra of the compounds 3a–3m usually showed one set of absorptions for the characterized group in the molecules except the products 3g and 3l, in which a mixture of two diastereoisomers were obtained in a ratio of 1[thin space (1/6-em)]:[thin space (1/6-em)]1 and 1[thin space (1/6-em)]:[thin space (1/6-em)]9. This result indicated that one diastereoisomer usually exist predominately in the products 3a–3m. The single crystal structure of the product 3i was successfully determined by X-ray diffraction method (Fig. 1). From Fig. 1 it can be seen that the styryl group exists in the trans-position to the phenyl group of oxindole moiety. On the basis of 1H NMR spectra and single crystal structure, we confessedly assigned the obtained products 3a–3m has the trans-configuration except compounds 3g and 3l. Then, the single crystal obtained from the product 3g containing a mixture of cis/trans-isomers also successfully determined by X-ray diffraction (Fig. 1). In the molecular structure showed in Fig. 1, the styryl group exists in the cis-position to the phenyl group of oxindole moiety. Thus, it is a cis-isomer. It should be pointed out that the similar three-component reaction of α,β-unsaturated N-arylaldimines, dimethyl acetylenedicarboxylates and isatins usually resulted in the spiro[indoline-3,6′-[1,3]oxazines] in a mixture of cis/trans-diastereoisomers.22 Thus, this three-component reaction had high diastereoselectivity and afforded polysubstituted spiro[indoline-3,4′-pyridines] mainly in the trans-diastereoisomer.
Table 1 Synthesis of spiro[indoline-3,4′-pyridines] 3a–3ma

image file: c5ra15139b-u1.tif

Entry Compd Ar Ar′ R1 R2 Yieldb (%, ratio of cis/trans-isomer)
a Reaction conditions: α,β-unsaturated N-arylaldimines (1.0 mmol), dimethyl acetylenedicarboxylate (1.0 mmol) and isatylidene malononitrile (1.0 mmol), in CH3CN (15.0 mL), rt, 24 h. b Isolated yields.
1 3a Ph p-MeOC6H4 H Bn 80
2 3b Ph p-MeOC6H4 H n-Pr 79
3 3c Ph p-MeOC6H4 F n-Bu 75
4 3d Ph p-MeOC6H4 Cl n-Pr 78
5 3e m-ClC6H4 Ph H n-Pr 72
6 3f m-ClC6H4 Ph F Bn 75
7 3g m-ClC6H4 Ph Cl n-Pr 70 (1[thin space (1/6-em)]:[thin space (1/6-em)]1)
8 3h m-ClC6H4 p-BrC6H4 H n-Pr 81
9 3i m-ClC6H4 p-BrC6H4 H Bn 77
10 3j m-ClC6H4 p-BrC6H4 F Bn 76
11 3k m-ClC6H4 p-BrC6H4 F n-Bu 76
12 3l m-ClC6H4 p-BrC6H4 Cl n-Pr 79 (1[thin space (1/6-em)]:[thin space (1/6-em)]9)
13 3m p-NO2C6H4 p-MeOC6H4 H Bn 74



image file: c5ra15139b-f1.tif
Fig. 1 Molecular structure of compound 3i (trans-isomer) and 3g (cis-isomer).

In order to develop the scope of this reaction, another common electron-deficient alkyne, methyl propiolate, was also employed in the three-component reaction. The results are summarized in Table 2. It can be seen that all reactions proceeded very smoothly to give the expected spiro[indoline-3,4′-pyridines] 4a–4g in good yields. The structures of the obtained compounds 4a–4g were established on IR, HRMS, 1H and 13C NMR spectroscopy. The 1H NMR of clearly indicated that only one diastereoisomer existed in the obtained examples of the products 4a–4g. The single crystal structure of the compound 4c was determined by X-ray diffraction method (Fig. 2). The styryl group and the phenyl group of oxindole moiety actually exist in the same side of the newly-formed dihydropyridyl ring in the molecule. Thus, it has same configuration with that of cis-diastereoisomer of compound 3g. According to the 1H NMR data and single crystal structure, all prepared products 4a–4g have the cis-configuration.

Table 2 Synthesis of spiro[indoline-3,4′-pyridines] 4a–4ga

image file: c5ra15139b-u2.tif

Entry Compd Ar Ar′ R1 R2 Yieldb [%]
a Reaction conditions: α,β-unsaturated N-arylaldimines (1.0 mmol), methyl propiolate (1.0 mmol) and isatylidene malononitrile (1.0 mmol), in CH3CN (15.0 mL), rt, 24 h. b Isolated yields.
1 4a Ph p-ClC6H4 H Bn 78
2 4b Ph p-BrC6H4 H Bn 82
3 4c Ph p-MeOC6H4 CH3 Bn 73
4 4d Ph p-MeOC6H4 CH3 n-Bu 68
5 4e Ph p-MeC6H4 F n-Pr 69
6 4f Ph p-MeC6H4 F Bn 64
7 4g m-MeC6H4 p-MeC6H4 Cl Bn 79



image file: c5ra15139b-f2.tif
Fig. 2 Molecular structure of compound 4c (cis-isomer).

Encouraged by this result, this new methodology was then applied to 2-(1,3-dioxo-1H-inden-2(3H)-ylidene)malononitrile. Under similar reaction conditions, the three-component reaction of α,β-unsaturated N-arylaldimine, dimethyl acetylenedicarboxylate and 2-(1,3-dioxo-1H-inden-2(3H)-ylidene)malononitrile in dry acetonitrile at room temperature afforded the expected functionalized spiro[indene-2,4′-pyridines] 5a–5g in high yields (Table 3). Because the scaffold of indan-1,3-dione is symmetric, there are no diastereoisomers existing in the prepared functionalized spiro[indene-2,4′-pyridines]. The elucidation of the structures of the compounds becomes much simple. The single crystal structure of the compound 5d was also determined by X-ray diffraction method (Fig. 3).

Table 3 Synthesis of spiro[indene-2,4′-pyridines] 5a–5ga

image file: c5ra15139b-u3.tif

Entry Compd Ar Ar′ Yieldb (%)
a Reaction conditions: α,β-unsaturated N-arylaldimines (1.0 mmol), dimethyl acetylenedicarboxylate (1.0 mmol) and 2-(1,3-dioxo-1H-inden-2(3H)-ylidene)malononitrile (1.0 mmol), in CH3CN (15.0 mL), rt, 24 h. b Isolated yields.
1 5a Ph Ph 72
2 5b Ph p-MeC6H4 78
3 5c Ph p-MeOC6H4 80
4 5d m-MeC6H4 Ph 70
5 5e m-MeC6H4 p-MeOC6H4 75
6 5f m-MeC6H4 p-BrC6H4 68



image file: c5ra15139b-f3.tif
Fig. 3 Molecular structure of compound 5d.

This three-component reaction proceeded very straightly. A concise reaction mechanism was proposed on the basis of the previously reported domino reactions containing of N-arylaldimine and electron-deficient alkynes (Scheme 2).21 The nucleophilic addition of α,β-unsaturated N-arylaldimines to dimethyl acetylenedicarboxylate resulted in the desired reactive intermediate (A). Then, Michael addition of carbanium ion of intermediate (A) to isatylidene malononitrile afforded a zwitterionic adduct (B). Finally, the intramolecular coupling of positive iminium ion with negative carbanium ion produced spiro[indoline-3,4′-pyridines] 3. Apparently, both cis-isomer and trans-isomer of spiro[indoline-3,4′-pyridines] could be formed in the final cyclization process. It might be pointed out that each reaction step in above sequential reaction process are in retro-equilibrium, the most stable stereoisomer should be formed as main product.


image file: c5ra15139b-s2.tif
Scheme 2 Proposed reaction mechanism for three-component reaction.

In summary, we have successfully provided an convenient synthetic protocol for the preparation of functionalized spiro[indoline-3,4′-pyridines] by the three-component reaction of α,β-unsaturated N-arylaldimines, acetylenedicarboxylates and isatylidene malononitrile. This reaction developed further applications of the reactive 1,4-dipolar intermediates in the synthesis of diverse heterocycles. The advantages of this reaction included using readily variable substrates, milder reaction conditions, easiness of handling, satisfactory yields and high diastereoselectivity. Further expansion of the reaction scope and synthetic applications of this methodology is underway.

Experimental section

General procedure for the synthesis of spiro[indoline-3,4′-pyridines] 3a–3m and 4a–4g from three-component reaction

A mixture of α,β-unsaturated N-arylaldimine (1.0 mmol), dimethyl acetylenedicarboxylate or methyl propiolate (1.0 mmol) and isatylidene malononitrile (1.0 mmol) in dry acetonitrile (15.0 mL) was stirred at room temperature for about 24 hours. After removing the solvent, the resulting oily residue was subjected to thin-layer chromatography with light petroleum and ethyl acetate (V/V = 2.5[thin space (1/6-em)]:[thin space (1/6-em)]1) as eluting solvent to give the pure product for analysis.
Dimethyl 1-benzyl-3′,3′-dicyano-1′-(4-methoxyphenyl)-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3a). White solid, 80%, m.p. 168–170 °C; 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J = 7.0 Hz, 1H, ArH), 7.44 (d, J = 7.1 Hz, 2H, ArH), 7.39–7.26 (m, 6H, ArH), 7.25 (s, 1H, ArH), 7.21–7.18 (m, 1H, ArH), 7.13 (t, J = 7.3 Hz, 1H, ArH), 6.87–6.78 (m, 4H, ArH, CH), 5.90 (dd, J = 15.5, 9.9 Hz, 1H, CH), 5.78 (d, J = 9.9 Hz, 1H, CH), 5.26 (d, J = 15.6 Hz, 1H, CH), 4.86 (d, J = 15.7 Hz, 1H, CH), 3.77 (s, 3H, OCH3), 3.50 (s, 3H, OCH3), 3.13 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 174.5, 164.1, 163.1, 159.7, 151.5, 143.2, 140.7, 135.0, 134.7, 131.4, 130.3, 129.1, 128.8, 128.7, 127.9, 127.6, 127.1, 126.4, 124.2, 123.6, 119.3, 111.7, 111.1, 110.0, 94.1, 60.9, 55.4, 52.5, 52.0, 51.3, 46.0, 45.0, 29.7; IR (KBr) ν: 3033, 2997, 2952, 2916, 2836, 1895, 1745, 1711, 1654, 1606, 1572, 1508, 1488, 1468, 1433, 1363, 1301, 1268, 1250, 1217, 1170, 1146, 1112, 1079, 1031, 961, 925, 835, 795, 748, 700 cm−1; MS (m/z): HRMS (ESI) calcd for C40H32N4NaO6 ([M + Na]+): 687.2214, found: 687.2208.
Dimethyl 3′,3′-dicyano-1′-(4-methoxyphenyl)-2-oxo-1-propyl-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3b). White solid, 79%, m.p. 170–172 °C; 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J = 7.5 Hz, 1H, ArH), 7.41 (d, J = 7.7 Hz, 1H, ArH), 7.29–7.23 (m, 4H, ArH), 7.19–7.13 (m, 3H, ArH), 6.99 (d, J = 7.8 Hz, 1H, ArH), 6.83–6.76 (m, 3H, ArH, CH), 5.92–5.86 (m, 1H, CH), 5.74 (d, J = 9.9 Hz, 1H, CH), 3.86–3.75 (m, 5H, CH2, OCH3), 3.48 (s, 3H, OCH3), 3.27 (s, 3H, OCH3), 1.84–1.79 (m, 2H, CH2), 1.06 (t, J = 7.4 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 174.2, 164.1, 163.2, 159.7, 151.4, 143.6, 140.5, 134.8, 131.5, 130.3, 129.1, 128.6, 127.1, 126.5, 124.3, 123.3, 119.3, 111.7, 110.9, 109.1, 94.3, 60.8, 55.4, 52.5, 51.7, 51.3, 45.9, 42.8, 20.7, 11.5; IR (KBr) ν: 3056, 3023, 2952, 2877, 2841, 1745, 1718, 1698, 1609, 1585, 1508, 1489, 1467, 1438, 1387, 1361, 1336, 1301, 1248, 1224, 1201, 1141, 1109, 1072, 1035, 981, 964, 932, 866, 848, 796, 759 cm−1; MS (m/z): HRMS (ESI) calcd for C36H32N4NaO6 ([M + Na]+): 639.2214, found: 639.2222.
Dimethyl 1-butyl-3′,3′-dicyano-5-fluoro-1′-(4-methoxyphenyl)-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3c). White solid, 75%, m.p. 240–242 °C; 1H NMR (400 MHz, CDCl3) δ: 7.29 (s, 1H, ArH), 7.27–7.08 (m, 8H, ArH), 6.94–6.91 (m, 1H, ArH), 6.81 (d, J = 7.8 Hz, 2H, ArH), 6.67 (d, J = 15.6 Hz, 1H, CH), 6.01 (s, 1H, CH), 4.85 (d, J = 9.4 Hz, 1H, CH), 3.87 (dd, J = 14.4, 7.3 Hz, 1H, CH), 3.80 (d, J = 7.5 Hz, 1H, CH), 3.76 (s, 3H, OCH3), 3.52 (s, 3H, OCH3), 3.47 (s, 3H, OCH3), 1.73–1.71 (m, 2H, CH2), 1.52–1.46 (m, 2H, CH2), 0.99 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 172.3, 163.7, 163.2, 160.0, 159.7, 157.6, 150.7, 140.5, 140.3, 134.5, 131.5, 131.2, 130.1, 130.0, 129.3, 128.7, 127.1, 119.0, 117.1 (d, J = 23.1 Hz), 114.1, 113.5 (d, J = 25.3 Hz), 110.6, 110.4, 110.0, 109.6 (d, J = 5.1 Hz), 93.7, 55.4, 52.6, 51.8, 45.1, 40.9, 29.1, 20.3, 13.7; IR (KBr) ν: 3069, 3006, 2955, 2872, 2552, 2297, 1721, 1688, 1651, 1607, 1527, 1510, 1492, 1439, 1387, 1344, 1285, 1250, 1226, 1176, 1148, 1111, 1084, 1023, 972, 931, 891, 855, 821, 798, 761, 724 cm−1; MS (m/z): HRMS (ESI) calcd for C37H33FN4NaO6 ([M + Na]+): 671.2276, found: 671.2290.
Dimethyl 5-chloro-3′,3′-dicyano-1′-(4-methoxyphenyl)-2-oxo-1-propyl-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3d). White solid, 78%, m.p. 200–202 °C; 1H NMR (400 MHz, CDCl3) δ: 7.62 (d, J = 1.9 Hz, 1H, ArH), 7.41–7.38 (m, 1H, ArH), 7.27–7.26 (s, 4H, ArH), 7.19–7.17 (m, 3H, ArH), 6.92 (d, J = 8.4 Hz, 1H, ArH), 6.85–6.77 (m, 3H, ArH, CH), 5.86 (dd, J = 15.5, 9.9 Hz, 1H, CH), 5.72 (d, J = 9.9 Hz, 1H, CH), 3.86–3.79 (m, 1H, CH), 3.77 (s, 3H, OCH3), 3.75–3.69 (m, 1H, CH), 3.50 (s, 3H, OCH3), 3.34 (s, 3H, OCH3), 1.82–1.77 (m, 2H, CH2), 1.05 (t, J = 7.4 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 173.8, 163.8, 163.0, 159.7, 151.7, 142.3, 140.8, 134.6, 131.2, 130.4, 129.2, 128.8, 128.7, 128.2, 127.1, 124.7, 119.0, 111.5, 110.6, 110.0, 93.6, 60.9, 55.4, 52.5, 51.8, 51.6, 45.7, 43.0, 29.7, 20.6, 11.5; IR (KBr) ν: 3025, 2952, 2878, 2839, 1746, 1703, 1652, 1607, 1573, 1509, 1486, 1434, 1381, 1340, 1300, 1250, 1220, 1202, 1140, 1108, 1030, 968, 915, 891, 833, 759, 727 cm−1; MS (m/z): HRMS (ESI) calcd for C33H31ClN4NaO6 ([M + Na]+): 673.1824, found: 673.1830.
Dimethyl 2′-(3-chlorostyryl)-3′,3′-dicyano-2-oxo-1′-phenyl-1-propyl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3e). White solid, 72%, m.p. 170–172 °C; 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J = 7.6 Hz, 1H, ArH), 7.45–7.33 (m, 6H, ArH), 7.23–7.14 (m, 3H, ArH), 7.10 (s, 1H, ArH), 7.00 (t, J = 6.5 Hz, 2H, ArH), 6.72 (d, J = 15.4 Hz, 1H, CH), 5.88 (dd, J = 15.3, 9.9 Hz, 1H, CH), 5.77 (d, J = 10.0 Hz, 1H, CH), 3.87–3.74 (m, 2H, CH2), 3.45 (s, 3H, OCH3), 3.28 (s, 3H, OCH3), 1.82 (dd, J = 14.8, 7.3 Hz, 2H, CH2), 1.06 (t, J = 7.4 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 174.0, 164.0, 163.0, 150.8, 143.6, 139.3, 138.9, 136.4, 134.6, 130.5, 130.4, 129.9, 129.3, 129.1 (2C), 126.9, 126.3, 125.2, 124.3, 123.4, 120.9, 111.6, 110.8, 109.2, 94.8, 60.5, 52.5, 51.6, 51.4, 45.8, 42.9, 20.5, 11.5; IR (KBr) ν: 3059, 3023, 2967, 2948, 2876, 1751, 1715, 1609, 1587, 1489, 1466, 1435, 1355, 1303, 1273, 1243, 1215, 1138, 1093, 1072, 980, 940, 892, 863, 829, 787, 754 cm−1; MS (m/z): HRMS (ESI) calcd for C35H29ClN4NaO5 ([M + Na]+): 643.1719, found: 643.1726.
Dimethyl 1-benzyl-2′-(3-chlorostyryl)-3′,3′-dicyano-5-fluoro-2-oxo-1′-phenyl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3f). White solid, 75%, m.p. 228–230 °C; 1H NMR (400 MHz, CDCl3) δ: 7.43–7.29 (m, 11H, ArH), 7.24–7.17 (m, 2H, ArH), 7.12 (s, 1H, ArH), 7.01–7.00 (m, 2H, ArH), 6.80–6.74 (m, 2H, ArH, CH), 5.91–5.80 (m, 2H, CH, CH), 5.24 (d, J = 15.7 Hz, 1H, CH), 4.85 (d, J = 15.7 Hz, 1H, CH), 3.47 (s, 3H, OCH3), 3.22 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 174.2, 163.8, 162.8, 160.6, 158.2, 151.3, 139.1, 139.3 (2C), 138.6, 136.3, 134.7, 134.6, 130.4, 129.9, 129.5, 129.2, 129.1, 128.9, 128.1, 127.9 (2C), 127.5, 127.0, 125.1, 120.6, 116.8 (d, J = 23.4 Hz), 116.1, 112.6 (d, J = 25.4 Hz), 111.3, 110.8 (d, J = 4.5 Hz), 110.7, 94.0, 60.6, 52.5, 51.6, 45.6, 45.2; IR (KBr) ν: 3065, 3031, 2952, 1747, 1716, 1652, 1581, 1491, 1451, 1434, 1378, 1351, 1306, 1266, 1220, 1179, 1139, 1068, 1024, 978, 932, 885, 826, 779, 726 cm−1; MS (m/z): HRMS (ESI) calcd for C39H28ClFN4NaO5 ([M + Na]+): 709.1624, found: 709.1626.
Dimethyl 5-chloro-2′-(3-chlorostyryl)-3′,3′-dicyano-2-oxo-1′-phenyl-1-propyl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3g). White solid, 70%, m.p. 220–222 °C; 1H NMR (400 MHz, CDCl3) trans-isomer: δ: 7.67–7.63 (m, 1H, ArH), 7.49–7.34 (m, 6H, ArH), 7.23–7.14 (m, 2H, ArH), 7.10 (s, 1H, ArH), 7.02–7.69 (m, 1H, ArH), 6.93 (d, J = 8.4 Hz, 1H, ArH), 6.70 (d, J = 5.2 Hz, 1H, CH), 5.85–5.81 (m, 1H, CH), 5.79–5.75 (m, 1H, CH), 3.85–3.74 (m, 2H, CH2), 3.46 (s, 3H, OCH3), 3.45 (s, 3H, OCH3), 1.87–1.77 (m, 2H, CH2), 1.06 (t, J = 7.4 Hz, 3H, CH3); cis-isomer: 7.23–7.14 (m, 1H, ArH), 7.02–7.69 (m, 1H, ArH), 6.75 (d, J = 5.2 Hz, 1H, CH), 5.91–5.87 (m, 1H, CH), 3.45 (s, 3H, OCH3), 3.28 (s, 3H, OCH3), 1.08–1.06 (m, 3H, CH3); ratio of cis/trans isomer = 1[thin space (1/6-em)]:[thin space (1/6-em)]1; 13C NMR (100 MHz, CDCl3) δ: 173.7, 163.7, 162.8, 151.1, 142.3, 139.5, 138.6, 136.3, 134.7, 130.5, 130.3, 129.9, 129.2, 129.2, 129.1, 128.9, 128.0, 127.0, 125.2, 124.7, 120.6, 111.3, 110.5, 110.1, 94.2, 60.5, 52.5, 51.7, 51.6, 45.6, 43.0, 20.6, 11.5; IR (KBr) ν: 3059, 3024, 2968, 2930, 2876, 1750, 1716, 1609, 1587, 1483, 1434, 1387, 1346, 1303, 1261, 1243, 1216, 1139, 1110, 1077, 1024, 983, 892, 828, 785, 732 cm−1; MS (m/z): HRMS (ESI) calcd for C35H28Cl2N4NaO5 ([M + Na]+): 677.1329, found: 677.1329.
Dimethyl 1′-(4-bromophenyl)-2′-(3-chlorostyryl)-3′,3′-dicyano-2-oxo-1-propyl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3h). White solid, 81%, m.p. 196–198 °C; 1H NMR (400 MHz, CDCl3) δ: 7.61 (d, J = 7.6 Hz, 1H, ArH), 7.49 (d, J = 8.1 Hz, 2H, ArH), 7.43 (t, J = 7.8 Hz, 1H, ArH), 7.26 (s, 1H, ArH), 7.24–7.15 (m, 5H, ArH), 7.06 (d, J = 7.4 Hz, 1H, ArH), 7.00 (d, J = 7.9 Hz, 1H, ArH), 6.74 (d, J = 15.4 Hz, 1H, CH), 5.90–5.84 (m, 1H, CH), 5.74 (d, J = 9.9 Hz, 1H, CH), 3.85–3.75 (m, 2H, CH2), 3.50 (s, 3H, OCH3), 3.28 (s, 3H, OCH3), 1.81–1.77 (m, 2H, CH2), 1.05 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 173.9, 163.8, 162.9, 150.3, 143.6, 139.8, 138.0, 136.1, 134.8, 132.4, 131.9, 130.6, 130.1, 129.4, 127.0, 126.1, 125.2, 124.3, 123.5, 120.4, 111.5, 110.6, 109.3, 95.9, 60.5, 52.7, 51.6, 51.5, 45.8, 42.9, 20.7, 11.5; IR (KBr) ν: 3028, 2968, 2875, 1740, 1718, 1694, 1612, 1579, 1489, 1469, 1473, 1383, 1364, 1332, 1268, 1224, 1201, 1142, 1098, 14[thin space (1/6-em)]071, 1050, 1012, 966, 933, 899, 863, 835, 797, 771, 745, 714 cm−1; MS (m/z): HRMS (ESI) calcd for C35H28BrClN4NaO5 ([M + Na]+): 721.0824, found: 721.0826.
Dimethyl 1-benzyl-1′-(4-bromophenyl)-2′-(3-chlorostyryl)-3′,3′-dicyano-2-oxo-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3i). White solid, 77%, m.p. 204–206 °C; 1H NMR (400 MHz, CDCl3) δ: 7.51–7.49 (m, 4H, ArH), 7.43–7.26 (m, 7H, ArH), 7.25–7.16 (m, 4H, ArH), 7.06 (d, J = 7.3 Hz, 1H, ArH), 6.93 (d, J = 7.8 Hz, 1H, ArH), 6.62 (d, J = 15.7 Hz, 1H, CH), 6.05 (s, 1H, CH), 5.11 (d, J = 15.6 Hz, 1H, CH), 5.01 (d, J = 15.6 Hz, 1H, CH), 4.93 (d, J = 9.4 Hz, 1H, CH), 3.54 (s, 3H, OCH3), 3.29 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 172.6, 163.6, 163.1, 149.5, 143.8, 139.5, 135.9, 135.1, 134.8, 132.5, 131.7, 131.1, 130.1, 129.5, 128.8, 128.1 (2C), 127.9, 127.2, 125.1, 125.0, 123.6, 123.1, 120.3, 110.5, 110.1, 95.7, 52.8, 51.9, 45.3, 45.0; IR (KBr) ν: 3059, 3006, 2950, 1716, 1686, 1591, 1487, 1434, 1362, 1339, 1290, 1216, 1187, 1145, 1102, 1069, 1011, 970, 940, 872, 786, 752, 735 cm−1; MS (m/z): HRMS (ESI) calcd for C39H28BrC N4NaO5 ([M + Na]+): 769.0824, found: 769.0825.
Dimethyl 1-benzyl-1′-(4-bromophenyl)-2′-(3-chlorostyryl)-3′,3′-dicyano-5-fluoro-2-oxo-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3j). White solid, 76%, m.p. 238–240 °C; 1H NMR (400 MHz, CDCl3) δ: 7.48 (d, J = 7.6 Hz, 4H, ArH), 7.27–7.28 (m, 5H, ArH), 7.24–7.18 (m, 3H, ArH), 7.10–7.07 (m, 3H, ArH), 6.85–6.82 (m, 1H, ArH), 6.67 (d, J = 15.6 Hz, 1H, CH), 6.04 (brs, 1H, CH), 5.09 (d, J = 15.6 Hz, 1H, CH), 5.00 (d, J = 16.0 Hz, 1H, CH), 4.84 (d, J = 9.4 Hz, 1H, CH), 3.56 (s, 3H, OCH3), 3.34 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 172.3, 163.6, 163.1, 160.1, 157.7, 149.8, 139.9, 135.9, 134.8 (2C), 132.4, 131.7, 130.1, 129.5, 128.9, 128.0, 127.9, 127.2, 125.2, 123.7, 120.0, 117.4 (d, J = 23.7 Hz), 113.4 (d, J = 25.4 Hz), 110.8 (d, J = 7.2 Hz), 110.3, 52.9, 52.0, 45.2, 45.1; IR (KBr) ν: 3071, 3031, 2953, 2853, 1867, 1726, 1691, 1650, 1572, 1490, 1438, 1384, 1340, 1292, 1246, 1226, 1180, 1146, 1101, 1073, 1014, 966, 891, 820, 737 cm−1; MS (m/z): HRMS (ESI) calcd for C39H27BrClFN4NaO5 ([M + Na]+): 787.0730, found: 787.0726.
Dimethyl 1′-(4-bromophenyl)-1-butyl-2′-(3-chlorostyryl)-3′,3′-dicyano-5-fluoro-2-oxo-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3k). White solid, 76%, m.p. 204–206 °C; 1H NMR (400 MHz, CDCl3) δ: 7.50 (d, J = 8.4 Hz, 2H, ArH), 7.39 (dd, J = 7.8, 2.4 Hz, 1H, ArH), 7.26 (d, J = 3.5 Hz, 1H, ArH), 7.25–7.18 (m, 3H, ArH), 7.18–7.12 (m, 2H, ArH), 7.06 (d, J = 7.4 Hz, 1H, ArH), 6.95–6.92 (m, 1H, ArH), 6.75 (d, J = 15.4 Hz, 1H, CH), 5.85 (dd, J = 15.4, 9.9 Hz, 1H, CH), 5.74 (d, J = 9.9 Hz, 1H, CH), 3.82 (dd, J = 8.4, 6.2 Hz, 2H, CH2), 3.51 (s, 3H, OCH3), 3.34 (s, 3H, OCH3), 1.75 (dd, J = 14.9, 7.5 Hz, 2H, CH2), 1.47 (dd, J = 15.0, 7.5 Hz, 2H, CH2), 0.99 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 173.6, 163.6, 162.7, 160.5, 158.0, 150.6, 140.0, 139.6 (2C), 137.8, 136.0, 134.8, 132.4, 131.9, 130.0, 129.4, 127.8, 127.7, 127.1, 125.2, 123.6, 120.1, 117.1, 116.9 (d, J = 23.3 Hz), 112.7 (d, J = 24.9 Hz), 112.5, 111.3, 110.4, 109.9 (d, J = 7.9 Hz), 109.8, 95.2, 60.5, 52.7, 51.8, 51.7, 45.6, 41.1, 29.1, 20.2, 13.7; IR (KBr) ν: 3067, 2951, 2926, 2873, 1746, 1711, 1616, 1569, 1491, 1435, 1406, 1378, 1351, 1305, 1267, 1226, 1170, 1139, 1103, 1073, 1046, 1012, 989, 932, 866, 818, 716 cm−1; MS (m/z): HRMS (ESI) calcd for C36H29BrClFN4NaO5 ([M + Na]+): 753.0886, found: 753.0880.
Dimethyl 1′-(4-bromophenyl)-5-chloro-2′-(3-chlorostyryl)-3′,3′-dicyano-2-oxo-1-propyl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3l). White solid, 79%, m.p. 210–212 °C; 1H NMR (400 MHz, CDCl3) trans-isomer δ: 7.60 (s, 1H, ArH), 7.52–7.49 (m, 2H, ArH), 7.43–7.40 (m, 1H, ArH), 7.23–7.12 (m, 6H, ArH), 7.06 (d, J = 7.4 Hz, 1H, ArH), 6.93 (d, J = 8.3 Hz, 1H, ArH), 6.75 (d, J = 15.4 Hz, 1H, CH), 5.87–5.80 (m, 1H, CH), 5.72 (d, J = 10.0 Hz, 1H, CH), 3.82–3.73 (m, 2H, CH2), 3.51 (s, 3H, OCH3), 3.35 (s, 3H, OCH3), 1.84–1.75 (m, 2H, CH2), 1.04 (t, J = 7.4 Hz, 3H, CH3); cis-isomer: 7.96 (s, 1H, ArH), 6.87 (d, J = 8.0 Hz, 1H, ArH), 6.45 (d, J = 15.2 Hz, 1H, CH), 6.11–6.05 (m, 1H, CH), 3.67 (s, 3H, OCH3), 3.49 (s, 3H, OCH3), 0.93 (t, J = 7.3 Hz, 3H, CH3). Ratio of cis/trans isomer = 1[thin space (1/6-em)]:[thin space (1/6-em)]9. 13C NMR (100 MHz, CDCl3) δ: 173.5, 163.6, 162.7, 150.6, 142.3, 140.0, 137.8, 136.0, 134.8, 132.4, 131.9, 130.6, 130.0, 129.5, 128.9, 127.8, 127.1, 125.2, 124.7, 123.6, 120.1, 111.2, 110.3, 110.2, 95.2, 60.6, 52.7, 51.8, 51.7, 45.6, 43.0, 20.6, 11.5; IR (KBr) ν: 3089, 3060, 2954, 2874, 1743, 1721, 1695, 1645, 1612, 1576, 1488, 1431, 1405, 1385, 1352, 1305, 1267, 1223, 1143, 1107, 1072, 1048, 1011, 968, 934, 888, 836, 795, 773, 711 cm−1; MS (m/z): HRMS (ESI) calcd for C35H27BrCl2N4NaO5 ([M + Na]+): 755.0434, found: 755.0428.
Dimethyl 1-benzyl-3′,3′-dicyano-1′-(4-methoxyphenyl)-2′-(4-nitrostyryl)-2-oxo-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′,6′-dicarboxylate (3m). White solid, 74%, m.p. 236–238 °C; 1H NMR (400 MHz, CDCl3) δ: 8.13 (d, J = 8.7 Hz, 2H, ArH), 7.63 (d, J = 7.5 Hz, 1H, ArH), 7.44 (d, J = 7.2 Hz, 2H, ArH), 7.41–7.26 (m, 8H, ArH), 7.14 (t, J = 7.6 Hz, 1H, ArH), 6.89–6.83 (m, 4H, ArH, CH), 6.08 (dd, J = 15.7, 9.9 Hz, 1H, CH), 5.83 (d, J = 9.9 Hz, 1H, CH), 5.25 (d, J = 15.7 Hz, 1H, CH), 4.87 (d, J = 15.7 Hz, 1H, CH), 3.78 (s, 3H, OCH3), 3.51 (s, 3H, OCH3), 3.14 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 174.4, 163.9, 163.0, 159.9, 151.2, 147.9, 143.2, 140.7, 138.2, 134.9, 131.2, 130.5, 128.8, 127.9, 127.7, 127.6, 126.1, 124.2, 124.0 (2C), 123.7, 111.4, 110.9, 110.1, 94.5, 60.5, 55.4, 52.6, 51.4, 45.6, 45.1; IR (KBr) ν: 3010, 2950, 2839, 1740, 1741, 1588, 1508, 1469, 1428, 1392, 1346, 1300, 1249, 1221, 1187, 1146, 1107, 1076, 1026, 970, 874, 834, 795, 754, 724 cm−1; MS (m/z): HRMS (ESI) calcd for C40H31N5NaO8 ([M + Na]+): 732.2065, found: 732.2068.
Methyl 1-benzyl-1′-(4-chlorophenyl)-3′,3′-dicyano-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxylate (4a). White solid, 78%, m.p. 206–208 °C; 1H NMR (400 MHz, CDCl3) δ: 7.98 (s, 1H, ArH), 7.50 (d, J = 6.8 Hz, 2H, ArH), 7.39–7.26 (m, 11H, ArH), 7.24–7.14 (m, 4H, ArH), 6.85–6.80 (m, 2H, CH, CH), 5.99 (brs, 1H, CH), 5.10 (s, 2H, CH, CH), 5.04 (d, J = 9.2 Hz, 1H, CH), 3.53 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 172.8, 164.5, 145.3, 144.0, 141.2, 140.9, 135.1, 134.2, 133.3, 130.9, 129.7, 129.5, 128.8 (2C), 127.7 (2C), 127.2, 124.7, 123.0, 119.4, 110.9, 110.6, 110.3, 97.7, 61.9, 52.1, 51.6, 45.6, 45.0; IR (KBr) ν: 3035, 2955, 1958, 1892, 1710, 1616, 1538, 1489, 1360, 1234, 1180, 1129, 1089, 1029, 977, 925, 835, 753, 695 cm−1;MS (m/z): HRMS (ESI) calcd for C37H27ClN4NaO3 ([M + Na]+): 633.1664, found: 633.1672.
Methyl 1-benzyl-1′-(4-bromophenyl)-3′,3′-dicyano-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro-[indoline-3,4′-pyridine]-5′-carboxylate (4b). White solid, 82%, m.p. 200–202 °C; 1H NMR (400 MHz, CDCl3) δ: 7.98 (s, 1H, ArH), 7.51 (t, J = 8.8 Hz, 4H, ArH), 7.36–7.27 (m, 8H, ArH), 7.24–7.13 (m, 5H, ArH), 6.84–6.80 (m, 2H, CH, CH), 5.98 (brs, 1H, CH), 5.10 (s, 2H, CH, CH), 5.05 (d, J = 9.2 Hz, 1H, CH), 3.53 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 172.8, 164.5, 145.2, 144.0, 141.8, 141.0, 135.1, 134.2, 132.7, 130.9, 129.5, 128.8 (2C), 127.7, 124.7, 123.0, 121.2, 119.4, 110.9, 110.5, 110.3, 97.8, 61.8, 60.4, 52.0, 51.6, 45.6, 44.9; IR (KBr) ν: 3033, 2955, 2918, 2250, 1958, 1891, 1708, 1615, 1485, 1360, 1278, 1234, 1179, 1128, 976, 924, 867, 829, 753, 697 cm−1; MS (m/z): HRMS (ESI) calcd for C37H27BrN4NaO3 ([M + Na]+): 677.1159, found: 677.1156.
Methyl 1-benzyl-3′,3′-dicyano-1′-(4-methoxyphenyl)-5-methyl-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxylate (4c). White solid, 73%, m.p. 194–196 °C; 1H NMR (400 MHz, CDCl3) δ: 7.94 (s, 1H, ArH), 7.41–7.39 (d, J = 7.9 Hz, 3H, ArH), 7.27 (ddd, J = 23.4, 15.1, 8.0 Hz, 10H, ArH), 7.07 (d, J = 7.8 Hz, 1H, ArH), 6.89 (dd, J = 23.9, 12.1 Hz, 3H, ArH, CH), 6.68 (d, J = 7.9 Hz, 1H, CH), 5.93 (dd, J = 15.5, 9.8 Hz, 1H, CH), 5.80 (d, J = 9.8 Hz, 1H, CH), 5.17 (d, J = 15.9 Hz, 1H, CH), 4.91 (d, J = 15.9 Hz, 1H, CH), 3.78 (s, 3H, OCH3), 3.38 (s, 3H, OCH3), 2.32 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ: 174.7, 164.8, 158.8, 147.8, 141.0, 140.5, 135.7, 135.0, 134.8, 133.2, 130.6, 129.1, 128.8, 128.7, 128.3, 127.7, 127.2 (2C), 126.2, 124.9, 120.0, 114.5, 111.9, 111.4, 109.8, 95.5, 60.1, 55.5, 52.0, 51.1, 46.2, 44.9, 21.3; IR (KBr) ν: 3085, 3061, 2997, 2947, 2834, 1702, 1593, 1503, 1439, 1351, 1305, 1228, 1175, 1100, 1029, 977, 808, 764, 710 cm−1; MS (m/z): HRMS (ESI) calcd for C39H32N4NaO4 ([M + Na]+): 643.2316, found: 643.2333.
Methyl 1-butyl-3′,3′-dicyano-1′-(4-methoxyphenyl)-5-methyl-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxylate (4d). White solid, 68%, m.p. 156–158 °C; 1H NMR (400 MHz, CDCl3) δ: 7.91 (s, 1H, ArH), 7.37 (s, 1H, ArH), 7.24–7.18 (m, 8H, ArH), 6.91–6.84 (m, 4H, ArH, CH, CH), 5.94–5.88 (m, 1H, CH), 5.78–5.75 (m, 1H, CH), 3.83–3.77 (m, 5H, CH2, OCH3), 3.41 (s, 3H, OCH3), 2.36 (s, 3H, CH3), 1.79–1.68 (m, 2H, CH2), 1.48–1.42 (m, 2H, CH2), 0.96 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 174.3, 164.7, 158.8, 147.7, 140.4, 135.8, 134.8, 132.8, 130.6, 129.1, 128.6, 128.2, 127.1, 126.3, 125.0, 120.1, 114.1, 111.9, 111.1, 108.9, 95.4, 59.9, 55.5, 51.7, 51.1, 46.1, 40.9, 29.2, 21.3, 20.2, 13.7; IR (KBr) ν: 3089, 3068, 2956, 2871, 2840, 2349, 1696, 1622, 1511, 1431, 1382, 1347, 1301, 1281, 1248, 1203, 1186, 1128, 1041, 970, 933, 841, 812, 782, 760, 702 cm−1; MS (m/z): HRMS (ESI) calcd for C36H34N4NaO4 ([M + Na]+): 609.2472, found: 609.2481.
Methyl 1-butyl-3′,3′-dicyano-1′-(4-methoxyphenyl)-5-methyl-2-oxo-2′-styryl-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxylate (4e). White solid, 69%, m.p. 204–206 °C; 1H NMR (400 MHz, CDCl3) δ: 7.97 (s, 1H, ArH), 7.42 (d, J = 8.2 Hz, 1H, ArH), 7.28–7.26 (m, 4H, ArH), 7.18–7.10 (m, 6H, ArH), 6.93 (d, J = 8.2 Hz, 1H, CH), 6.83 (d, J = 15.7 Hz, 1H, CH), 6.01 (s, 1H, CH), 4.92 (d, J = 9.2 Hz, 1H, CH), 3.90–3.85 (m, 1H, CH), 3.75–3.68 (m, 1H, CH), 3.57 (s, 3H, OCH3), 2.34 (s, 3H, CH3), 1.84–1.78 (m, 2H, CH2), 1.05 (t, J = 7.2 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 172.3, 164.6, 146.2, 143.0, 140.5, 140.0, 137.9, 134.5, 130.8, 130.7, 130.1, 129.2, 128.7, 128.6, 127.8, 127.2, 126.3, 125.3, 119.6, 110.8, 110.3, 110.1, 95.0, 61.9, 51.4, 45.4, 42.7, 21.0, 20.5, 11.5; IR (KBr) ν: 3085, 3070, 3029, 2977, 2962, 2940, 2876, 1876, 1714, 1693, 1628, 1607, 1511, 1483, 1437, 1380, 1350, 1330, 1316, 1302, 1286, 1270, 1247, 1228, 1196, 1164, 1132, 1116, 1089, 1057, 1040, 1017, 988, 969, 945, 935, 926, 910, 883, 858, 815, 787, 771, 760, 743, 722 cm−1; MS (m/z): HRMS (ESI) calcd for C34H29ClN4NaO3 ([M + Na]+): 599.1820, found: 599.1828.
Methyl 1-benzyl-3′,3′-dicyano-5-fluoro-2-oxo-2′-styryl-1′-p-tolyl-2′,3′-dihydro-1′H-spiro-[indoline-3,4′-pyridine]-5′-carboxylate (4f). White solid, 64%, m.p. 150–152 °C; 1H NMR (400 MHz, CDCl3) δ: 7.99 (s, 1H, ArH), 7.47 (d, J = 7.3 Hz, 2H, ArH), 7.35–7.22 (m, 8H, ArH), 7.20–7.18 (s, 4H, ArH), 7.03–6.99 (m, 2H, ArH), 6.81 (d, J = 15.7 Hz, 1H, CH), 6.74–6.71 (m, 1H, CH), 6.02 (s, 1H, CH), 5.13–5.02 (m, 2H, CH, CH), 4.95 (d, J = 9.4 Hz, 1H, CH), 3.54 (s, 3H, OCH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 172.7, 164.6, 160.1, 157.7, 146.2, 140.3 (d, J = 16.0 Hz), 137.8, 134.8, 134.4, 130.8 (d, J = 8.4 Hz), 128.8, 128.7, 127.8, 127.5, 127.2, 126.1, 119.5, 117.2, 116.9, 113.1, 112.8, 110.8 (d, J = 8.8 Hz), 110.3, 109.9, 51.4, 45.0, 21.0; IR (KBr) ν: 3067, 3030, 2951, 1729, 1686, 1621, 1607, 1512, 1491, 1444, 1379, 1346, 1332, 1271, 1241, 1178, 1167, 1133, 1090, 1076, 1039, 1001, 970, 930, 908, 870, 820, 796, 783, 761, 736, 726 cm−1; MS (m/z): HRMS (ESI) calcd for C38H29FN4NaO3 ([M + Na]+): 631.2116, found: 631.2123.
Methyl 1-benzyl-5-chloro-3′,3′-dicyano-1′-(4-methylphenyl)-2′-(3-methylstyryl)-2-oxo-2′,3′-dihydro-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxylate (4g). White solid, 79%, m.p. 192–194 °C; 1H NMR (400 MHz, CDCl3) δ: 8.01 (s, 1H, ArH), 7.48 (d, J = 7.2 Hz, 2H, ArH), 7.35 (t, J = 7.2 Hz, 2H, ArH), 7.30–7.28 (m, 2H, ArH), 7.19–7.16 (m, 6H, ArH), 7.11–7.06 (m, 3H, ArH), 6.81 (d, J = 15.6 Hz, 1H, CH), 6.73 (d, J = 8.4 Hz, 1H, CH), 6.00 (brs, 1H, CH), 5.10 (s, 2H, CH, CH), 4.94 (d, J = 9.2 Hz, 1H, CH), 3.56 (s, 3H, OCH3), 2.35 (s, 3H, CH3), 2.29 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 172.7, 164.6, 146.4, 142.6, 140.8, 140.0, 138.4, 137.9, 134.7, 134.4, 130.7, 130.2, 128.9, 128.9, 128.6, 128.2, 127.9, 127.6, 126.3, 125.2, 124.4, 119.1, 111.2, 110.4, 95.8, 62.0, 52.2, 51.6, 45.5, 45.1, 21.3, 21.1; IR (KBr) ν: 3055, 2952, 2912, 2251, 1888, 1730, 1691, 1613, 1546, 1483, 1437, 1334, 1237, 1178, 1125, 1040, 975, 824, 776, 735, 964 cm−1; MS (m/z): HRMS (ESI) calcd for C39H31ClN4NaO3 ([M + Na]+): 661.1977, found: 661.1984.

General procedure for the synthesis of spiro[indene-2,4′-pyridines] 5a–5f from three-component reaction

A mixture of α,β-unsaturated N-arylaldimine (1.0 mmol), dimethyl acetylenedicarboxylate (1.0 mmol) and 2-(1,3-dioxo-1H-inden-2(3H)-ylidene)malononitrile (1.0 mmol) in dry acetonitrile (15.0 mL) was stirred at room temperature for about 24 hours. After removing the solvent, the resulting oily residue was subjected to thin-layer chromatography with light petroleum and ethyl acetate (V/V = 2.5[thin space (1/6-em)]:[thin space (1/6-em)]1) as eluting solvent to give the pure product for analysis.
Dimethyl 3′,3′-dicyano-1,3-dioxo-1′-phenyl-2′-styryl-1,2′,3,3′-tetrahydro-1′H-spiro[indene-2,4′-pyridine]-5′,6′-dicarboxylate (5a). White solid, 72%, m.p. 160–162 °C; 1H NMR (400 MHz, CDCl3) δ: 8.19 (d, J = 7.1 Hz, 1H, ArH), 8.11 (d, J = 6.9 Hz, 1H, ArH), 8.03–7.95 (m, 2H, ArH), 7.46–7.29 (m, 5H, ArH), 7.28–7.25 (m, 3H, ArH), 7.18–7.12 (m, 2H, ArH, CH), 6.79 (d, J = 15.6 Hz, 1H, CH), 5.89 (dd, J = 15.4, 9.9 Hz, 1H, CH), 5.44 (d, J = 9.8 Hz, 1H, CH), 3.49 (s, 3H, OCH3), 3.43 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 197.8, 194.1, 164.2, 162.6, 151.7, 141.6, 141.1, 139.5, 138.5, 137.2, 136.4, 134.4, 130.3, 129.4, 129.3, 129.1, 128.7, 127.1, 124.1, 124.0, 118.4, 110.5, 109.9, 93.5, 62.3, 54.9, 52.5, 52.0, 41.2, 29.7; IR (KBr) ν: 3061, 3040, 3005, 2949, 2917, 2848, 1745, 1711, 1688, 1579, 1197, 1167, 1154, 1139, 1100, 1064, 1020, 1002, 958, 925, 882, 855, 805, 792, 778, 753, 707 cm−1; MS (m/z): HRMS (ESI) calcd forC33H23N3NaO6 ([M + Na]+): 580.1479, found: 580.1494.
Dimethyl 3′,3′-dicyano-1,3-dioxo-2′-styryl-1′-p-tolyl-1,2′,3,3′-tetrahydro-1′H-spiro[indene-2,4′-pyridine]-5′,6′-dicarboxylate (5b). White solid, 78%, m.p. 168–170 °C; 1H NMR (400 MHz, CDCl3) δ: 8.15 (d, J = 7.4 Hz, 1H, ArH), 8.08 (d, J = 7.4 Hz, 1H, ArH), 8.00–7.92 (m, 2H, ArH), 7.29–7.07 (m, 9H, ArH), 6.75 (d, J = 15.6 Hz, 1H, CH), 5.88 (dd, J = 15.4, 9.9 Hz, 1H, CH), 5.38 (d, J = 9.8 Hz, 1H, CH), 3.48 (s, 3H, OCH3), 3.40 (s, 3H, OCH3), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 197.9, 194.2, 164.3, 162.7, 152.0, 141.7, 140.9, 139.5, 137.2, 136.4, 135.9, 134.5, 129.9, 129.7, 129.3, 128.7, 127.1, 124.1, 124.0, 118.5, 110.5, 109.9, 93.3, 62.4, 54.9, 52.5, 52.0, 41.2, 21.2; IR (KBr) ν: 3064, 3039, 2997, 2952, 2851, 1760, 1715, 1675, 1589, 1508, 1438, 1194, 1168, 1111, 1096, 1064, 1045, 1019, 1004, 978, 945, 925, 881, 850, 817, 792, 773, 755, 714 cm−1; MS (m/z): HRMS (ESI) calcd forC34H25N3NaO6 ([M + Na]+): 594.1636, found: 594.1638.
Dimethyl 3′,3′-dicyano-1′-(4-methoxyphenyl)-1,3-dioxo-2′-styryl-1,2′,3,3′-tetrahydro-1′H-spiro[indene-2,4′-pyridine]-5′,6′-dicarboxylate (5c). White solid, 80%, m.p. 200–202 °C; 1H NMR (400 MHz, CDCl3) δ: 8.18–7.93 (m, 4H, ArH), 7.38 (s, 1H, ArH), 7.26–7.18 (m, 5H, ArH), 6.88–6.72 (m, 3H, ArH, CH), 5.95–5.85 (m, 1H, CH), 5.37 (d, J = 9.5 Hz, 1H, CH), 3.78 (s, 3H, OCH3), 3.50 (s, 3H, OCH3), 3.41 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3) δ: 197.9, 194.2, 164.3, 162.6, 159.8, 152.2, 141.6, 140.9, 139.5, 137.2, 136.4, 134.5, 131.5, 131.1, 129.3, 128.7, 127.1, 124.1, 124.0, 118.4, 11.5, 11.0, 93.2, 62.5, 62.4, 55.4, 52.6, 51.9, 41.2, 29.7; IR (KBr) ν: 3086, 3049, 3002, 2972, 2949, 2838, 1753, 1711, 1681, 1605, 1568, 1509, 1438, 1311, 1283, 1171, 1070, 1048, 1004, 963, 943, 926, 881, 864, 852, 835, 811, 796, 770, 775, 729, 711 cm−1; MS (m/z): HRMS (ESI) calcd for C34H25N3NaO7 ([M + Na]+): 610.1585, found: 610.1592.
Dimethyl 3′,3′-dicyano-2′-(3-methylstyryl)-1,3-dioxo-1′-phenyl-1,2′,3,3′-tetrahydro-1′H-spiro[indene-2,4′-pyridine]-5′,6′-dicarboxylate (5d). White solid, 70%, m.p. 196–198 °C; 1H NMR (400 MHz, CDCl3) δ: 8.16 (d, J = 7.4 Hz, 1H, ArH), 8.08 (d, J = 7.4 Hz, 1H, ArH), 8.00–7.93 (m, 2H, ArH), 7.32 (t, J = 13.5 Hz, 5H, ArH), 7.12 (t, J = 7.5 Hz, 1H, ArH), 7.05 (d, J = 7.6 Hz, 1H, ArH), 6.93 (d, J = 8.4 Hz, 2H, ArH), 6.73 (d, J = 15.6 Hz, 1H, CH), 5.84 (dd, J = 15.6, 9.8 Hz, 1H, CH), 5.39 (d, J = 9.9 Hz, 1H, CH), 3.46 (s, 3H, OCH3), 3.40 (s, 3H, OCH3), 2.26 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 197.9, 194.1, 164.3, 162.6, 151.8, 141.7, 141.3, 139.5, 138.6, 138.4, 137.2, 136.4, 134.3, 130.3, 130.1, 129.4, 129.1, 128.5, 127.7, 124.2, 124.1, 124.0, 118.1, 110.5, 110.0, 93.5, 62.4, 54.9, 52.5, 52.0, 41.2, 21.2; IR (KBr) ν: 3064, 3028, 3003, 2953, 2928, 1963, 1744, 1714, 1676, 1578, 1172, 1157, 1139, 1115, 1059, 1076, 1002, 981, 947, 920, 881, 858, 844, 814, 784, 767, 738 cm−1; MS (m/z): HRMS (ESI) calcd for C34H25N3NaO6 ([M + Na]+): 594.1636, found: 594.1638.
Dimethyl 3′,3′-dicyano-1′-(4-methoxyphenyl)-2′-(3-methylstyryl)-1,3-dioxo-1,2′,3,3′-tetrahydro-1′H-spiro[indene-2,4′-pyridine]-5′,6′-dicarboxylate (5e). White solid, 75%, m.p. 188–190 °C; 1H NMR (400 MHz, CDCl3) δ: 8.15 (d, J = 7.1 Hz, 1H, ArH), 8.07 (d, J = 7.5 Hz, 1H, ArH), 7.99–7.91 (m, 2H, ArH), 7.38 (s, 1H, ArH), 7.15 (dd, J = 22.1, 14.6 Hz, 2H, ArH), 7.06 (d, J = 7.4 Hz, 1H, ArH), 6.96 (d, J = 7.1 Hz, 2H, ArH), 6.82 (d, J = 7.5 Hz, 2H, ArH), 6.72 (d, J = 15.6 Hz, 1H, CH), 5.87 (dd, J = 15.3, 10.0 Hz, 1H, CH), 5.35 (d, J = 9.8 Hz, 1H, CH), 3.76 (s, 3H, OCH3), 3.49 (s, 3H, OCH3), 3.40 (s, 3H, OCH3), 2.27 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 197.9, 194.2, 164.3, 162.7, 159.8, 152.2, 141.7, 141.1, 139.5, 138.4, 137.2, 136.4, 134.4, 131.4, 131.1, 130.1, 128.6, 127.8, 124.3, 124.1, 124.0, 118.1, 110.5, 110.0, 93.1, 62.5, 55.4, 52.6, 51.9, 41.2, 21.2; IR (KBr) ν: 3058, 3023, 3002, 29[thin space (1/6-em)]563, 2842, 1756, 1716, 1579, 1590, 1508, 1454, 1193, 1169, 1153, 1138, 1108, 1096, 1066, 1044, 1034, 1003, 983, 947, 880, 859, 835, 801, 788, 770, 724 cm−1; MS (m/z): HRMS (ESI) calcd for C35H27N3NaO7 ([M + Na]+): 624.1741, found: 624.1744.
Dimethyl 1′-(4-bromophenyl)-3′,3′-dicyano-2′-(3-methylstyryl)-1,3-dioxo-1,2′,3,3′-tetrahydro-1′H-spiro[indene-2,4′-pyridine]-5′,6′-dicarboxylate (5f). White solid, 68%, m.p.208–210 °C; 1H NMR (400 MHz, CDCl3) δ: 8.15 (d, J = 7.3 Hz, 1H, ArH), 8.08 (d, J = 7.3 Hz, 1H, ArH), 8.00–7.93 (m, 2H, ArH), 7.48 (d, J = 8.4 Hz, 2H, ArH), 7.25 (s, 2H, ArH), 7.16 (s, 1H, ArH), 7.09 (d, J = 7.6 Hz, 1H, ArH), 6.97 (s, 2H, ArH), 6.75 (d, J = 15.6 Hz, 1H, CH), 5.82 (dd, J = 15.6, 9.9 Hz, 1H, CH), 5.36 (d, J = 9.9 Hz, 1H, CH), 3.51 (s, 3H, OCH3), 3.40 (s, 3H, OCH3), 2.28 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ: 197.6, 193.9, 164.1, 162.5, 151.3, 141.8, 141.6, 139.5, 138.5, 137.6, 137.3, 136.5, 134.1, 132.3, 131.9, 130.4, 128.7, 127.8, 124.3, 124.2, 124.1, 123.6, 117.6, 110.3, 109.9, 94.5, 62.4, 54.9, 52.7, 52.1, 41.3, 21.2; IR (KBr) ν: 3089, 3057, 2957, 2920, 2844, 1749, 1708, 1593, 1575, 1488, 1434, 1401, 1384, 1191, 1167, 1155, 1104, 1072, 1012, 973, 879, 863, 835, 814, 770, 745, 724, 706 cm−1; MS (m/z): HRMS (ESI) calcd for C34H24BrN3NaO6 ([M + Na]+): 672.0741, found: 672.0738.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21172189) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. A. A. Patchett, R. P. Nargund, J. R. Tata, M.-H. Chen, K. J. Barakat, D. B. R. Johnston, K. Cheng, W. W.-S. Chan, B. Butler, G. Hickey, T. Jacks, K. Schleim, S.-S. Pong, L.-Y. P. Chaung, H. Y. Chen, E. Frazier, K. H. Leung, S.-H. L. Chiu and R. G. Smith, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 7001 CrossRef CAS .
  2. (a) D. Rampe and J. M. Kane, Drug Dev. Res., 1994, 33, 344 CrossRef CAS PubMed ; (b) M. F. Gordeev, D. V. Patel and E. M. Gordon, J. Org. Chem., 1996, 61, 924 CrossRef CAS ; (c) N. Buckley, A. Dawson and I. Whyte, Medicine, 2007, 35, 599 CrossRef PubMed ; (d) C. O. Kappe, Eur. J. Med. Chem., 2000, 35, 1043 CrossRef CAS .
  3. (a) A. Saini, S. Kumar and J. S. Sandhu, J. Sci. Ind. Res., 2008, 67, 95 CAS ; (b) D. Schade, M. Lanier, E. Willems, K. Okolotowicz, P. Bushway, C. Wahlquist, C. Gilley, M. Mercola and J. R. Cashman, J. Med. Chem., 2012, 55, 9946 CrossRef CAS PubMed .
  4. (a) J. L. Harper, C. S. Camerini-Otero, A. H. Li, S. A. Kim, K. A. Jacobson and J. W. Daly, Biochem. Pharmacol., 2003, 65, 329–338 CrossRef CAS ; (b) A. Zarghi, H. Sadeghi, A. Fassihi, M. Faizi and A. Shafiee, Farmaco, 2003, 58, 1077–1081 CrossRef CAS .
  5. (a) F. Bossert, H. Meyer and E. Wehinger, Angew. Chem., Int. Ed. Engl., 1981, 20, 762–769 CrossRef PubMed ; (b) S. Goldman and J. Stoltefuss, Angew. Chem., Int. Ed. Engl., 1991, 30, 1559–1578 CrossRef PubMed ; (c) F. Bossert and W. Vater, Med. Res. Rev., 1989, 9, 291–324 CrossRef CAS PubMed .
  6. (a) D. M. Stout and A. I. Meyers, Chem. Rev., 1982, 82, 223 CrossRef CAS ; (b) R. Lavilla, J. Chem. Soc., Perkin Trans. 1, 2002, 1141 RSC ; (c) J. A. Bull, J. J. Mousseau, G. Pelletier and A. B. Charette, Chem. Rev., 2012, 112, 2642 CrossRef CAS PubMed ; (d) J. P. Wan and Y. Liu, RSC Adv., 2012, 2, 9763 RSC .
  7. (a) L. Sambri, Synlett, 2007, 2897 CrossRef ; (b) R. K. Vohra, C. Bruneau and J.-L. Renaud, Adv. Synth. Catal., 2006, 348, 2571 CrossRef CAS PubMed ; (c) V. Sridharan, P. T. Perumal, C. Avendano and J. C. Menendez, Tetrahedron, 2007, 63, 4407 CrossRef CAS PubMed ; (d) A. Noole, M. Borissova, M. Lopp and T. Kanger, J. Org. Chem., 2011, 76, 1538 CrossRef CAS PubMed .
  8. (a) X. Ji, H. Huang, W. Wu, X. Li and H. Jiang, J. Org. Chem., 2013, 78, 11155 CrossRef CAS PubMed ; (b) C. Baumert, M. Gunthel, S. Krawczyk, M. Hemmer, T. Wersig, A. Langner, J. Molnar, H. Lage and A. Hilgeroth, Bioorg. Med. Chem., 2013, 21, 166 CrossRef CAS PubMed ; (c) A. T. Khan and M. M. Khan, Tetrahedron Lett., 2011, 52, 3455 CrossRef CAS PubMed ; (d) J. P. Wan, S.-F. Gan, G. L. Sun and Y. J. Pan, J. Org. Chem., 2009, 74, 2862 CrossRef CAS PubMed .
  9. (a) L. Singh, M. P. S. Ishar, M. Elango, V. Subramanian, V. Gupta and P. Kanwal, J. Org. Chem., 2008, 73, 2224 CrossRef CAS PubMed ; (b) M. P. S. Ishar, K. Kumar, S. Kaur, S. Kumar, N. K. Girdhar, S. Sachar, A. Marwaha and A. Kapoor, Org. Lett., 2001, 3, 2133 CrossRef CAS PubMed ; (c) G. Sabitha, G. S. K. K. Reddy, C. S. Reddy and J. S. Yadav, Tetrahedron Lett., 2003, 44, 4129–4131 CrossRef CAS .
  10. (a) J. Sun, E. Y. Xia, Q. Wu and C. G. Yan, Org. Lett., 2010, 12, 3678–3681 CrossRef CAS PubMed ; (b) J. Sun, Q. Wu, E. Y. Xia and C. G. Yan, Eur. J. Org. Chem., 2011, 2981–2986 CrossRef CAS PubMed ; (c) J. Sun, Y. Sun, E. Y. Xia and C. G. Yan, ACS Comb. Sci., 2011, 13, 436–441 CrossRef CAS PubMed ; (d) J. Sun, Y. Sun, H. Gao and C. G. Yan, Synthesis, 2012, 1069–1073 CAS ; (e) Y. Sun, J. Sun and C. G. Yan, Mol. Diversity, 2012, 16, 163–171 CrossRef CAS PubMed ; (f) L. L. Zhang, J. Sun and C. G. Yan, Tetrahedron Lett., 2012, 53, 6965–6967 CrossRef CAS PubMed .
  11. (a) B. L. Palucki, S. D. Feighner, S. S. Pong, K. K. McKee, D. L. Hreniuk, C. Tan, A. D. Howard, L. H. Y. van der Ploeg, A. A. Patchetta and R. P. Nargunda, Bioorg. Med. Chem. Lett., 2001, 11, 1955–1957 CrossRef CAS ; (b) L. B. Ye, Y. X. Tian, Z. H. Li, H. Jin, Z. G. Zhu, S. H. Wan, J. Y. Zhang, P. J. Yu, J. J. Zhang and S. G. Wu, Eur. J. Med. Chem., 2012, 50, 370–375 CrossRef CAS PubMed .
  12. (a) A. A. Esmaili and A. Bodaghi, Tetrahedron, 2003, 59, 1169–1171 CrossRef CAS ; (b) A. A. Esmaeili and M. Darbanian, Tetrahedron, 2003, 59, 5545–5548 CrossRef ; (c) I. Yavari, S. Seyfi and Z. Hossaini, Tetrahedron Lett., 2010, 51, 2193–21949 CrossRef CAS PubMed ; (d) Z. N. Tisseh, F. Ahmadi, M. Dabiri, H. R. Khavasi and A. Bazgir, Tetrahedron Lett., 2012, 53, 3603–3606 CrossRef CAS PubMed ; (e) V. Nair, A. U. Vinod, N. Abhilash, R. S. Menon, V. Santhi, R. L. Varma, S. Viji, S. Mathewa and R. Srinivas, Tetrahedron, 2003, 59, 10279–10286 CrossRef CAS PubMed ; (f) A. A. Esmaelli and M. Nazer, Synlett, 2009, 2119–2122 CrossRef ; (g) A. A. Esmaeili, H. Vesalipoor, R. Hosseinabadi, A. F. Zavareh, N. A. Naseri and E. Ghiamati, Tetrahedron Lett., 2011, 52, 4865–4867 CrossRef CAS PubMed .
  13. (a) A. Alizadeh and J. Mokhtari, Tetrahedron, 2011, 67, 3519–3523 CrossRef CAS PubMed ; (b) Y. A. Ammar, M. M. Ali, Y. A. Mohamed, H. K. Thabet and M. S. A. El-Gaby, Heterocycl. Commun., 2013, 19, 195–200 CrossRef CAS ; (c) Y. R. Liang, X. Y. Chen, Q. Wu and X. F. Lin, Tetrahedron, 2015, 71, 616–621 CrossRef CAS PubMed ; (d) A. Dandia, A. K. Laxkar and R. Singh, Tetrahedron Lett., 2012, 53, 3012–3017 CrossRef CAS PubMed ; (e) N. Y. Chen, L. P. Ren, M. M. Zou, z. P. Xu, X. S. Shao, X. Y. Xu and Z. Li, Chin. Chem. Lett., 2014, 25, 197–200 CrossRef CAS PubMed ; (f) R. Ghahremanzadeh, Z. Rashid, A. H. Zarnani and H. Naeimi, Ultrason. Sonochem., 2014, 21, 1451–1460 CrossRef CAS PubMed .
  14. (a) J. Sun, Q. Wu, L. J. Zhang and C. G. Yan, Chin. J. Chem., 2012, 30, 1548–1554 CrossRef CAS PubMed ; (b) L. J. Zhang, Q. Wu, J. Sun and C. G. Yan, Beilstein J. Org. Chem., 2013, 9, 846–851 CrossRef CAS PubMed ; (c) H. Gao, J. Sun and C. G. Yan, Mol. Diversity, 2014, 18, 511–519 CrossRef CAS PubMed ; (d) C. Wang, Y. H. Jiang and C. G. Yan, Beilstein J. Org. Chem., 2014, 10, 2671–2676 CrossRef PubMed ; (e) H. Gao, J. Sun and C. G. Yan, J. Org. Chem., 2014, 79, 4131–4136 CrossRef CAS PubMed ; (f) H. Gao, J. Sun and C. G. Yan, Mol. Diversity, 2014, 18, 511–519 CrossRef CAS PubMed .
  15. (a) A. Dömling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168–3210 CrossRef ; (b) A. Dömling, Chem. Rev., 2006, 106, 17–89 CrossRef PubMed ; (c) E. Ruijter, R. Scheffelaar and R. V. A. Orru, Angew. Chem., Int. Ed., 2011, 50, 6234–6246 CrossRef CAS PubMed .
  16. (a) N. Isambert and R. Lavilla, Chem.–Eur. J., 2008, 14, 8444–8454 CrossRef CAS PubMed ; (b) B. A. Arndtsen, Chem.–Eur. J., 2009, 15, 302–313 CrossRef CAS PubMed ; (c) S. F. Martin, Chem.–Eur. J., 2009, 15, 1300–1308 CrossRef PubMed .
  17. V. Nair, S. Devipriya and E. Suresh, Tetrahedron, 2008, 64, 3567–3577 CrossRef CAS PubMed .
  18. H. B. Yang, X. Y. Guan, Y. Wei and M. Shi, Eur. J. Org. Chem., 2012, 2792–2800 Search PubMed .
  19. S. E. Kiruthika, N. V. Lakshmi, B. R. Banu and P. T. Perumal, Tetrahedron Lett., 2011, 52, 6508–6511 CrossRef CAS PubMed .
  20. (a) J. Sun, Q. Wu, L. J. Zhang and C. G. Yan, Chin. J. Chem., 2012, 30, 1548–1554 CrossRef CAS PubMed ; (b) L. J. Zhang, Q. Wu, J. Sun and C. G. Yan, Beilstein J. Org. Chem., 2013, 9, 846–851 CrossRef CAS PubMed .
  21. (a) M. Lei, Z. J. Zhan, W. Tian and P. Lu, Tetrahedron, 2012, 68, 3361–3367 CrossRef CAS PubMed ; (b) M. Lei, W. Tian, W. Li, P. Lu and Y. G. Wang, Tetrahedron, 2014, 70, 3665–3674 CrossRef CAS PubMed ; (c) Y. F. Li, J. Shi, Z. G. Wu, X. L. Wang, X. W. Wu, J. C. Gu, H. Z. Bu and H. F. Ma, Tetrahedron, 2014, 70, 2472–2477 CrossRef PubMed ; (d) Y. F. Li, Z. G. Wu, J. Shi, Y. Pan, H. Z. Bu, H. F. Ma, J. C. Gu, H. Huang, Y. Z. Wang and L. Wu, Tetrahedron, 2014, 70, 8971–8975 CrossRef CAS PubMed .
  22. (a) J. Zhang and C. G. Yan, Eur. J. Org. Chem., 2014, 5598–5602 CrossRef CAS PubMed ; (b) J. Zhang and C. G. Yan, Tetrahedron, 2015, 71, 6681–6688 CrossRef CAS PubMed .

Footnote

Electronic supplementary information (ESI) available: Experimental procedures and spectral data for all new compounds. CCDC 1408944–1408946 and 1415163. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra15139b

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.