Copper catalyzed synthesis of unsymmetrical diaryl sulfones from an arenediazonium salt and sodium p-toluenesulfinate

Sitaram Haribhau Gund, Radheshyam Suresh Shelkar and Jayashree Milind Nagarkar*
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai – 400019, India. E-mail: jm.nagarkar@ictmumbai.edu.in; Fax: +91 22 33611020; Tel: +91 22 33611111/2222

Received 31st May 2015 , Accepted 16th July 2015

First published on 16th July 2015


Abstract

Aryl sulfones have been for the first time synthesized by the reaction of sodium p-toluenesulfinate and arenediazonium salts using a CuI catalyzed homogeneous system. The developed protocol is a simple and efficient new route for the synthesis of diaryl sulfones with excellent product yields. The mild reaction conditions tolerate a range of functional groups. The best results were obtained with CuI, N,N′-dimethylethylenediamine, TBAI and K2CO3 in dimethyl sulfoxide at 100 °C under an inert atmosphere.


1 Introduction

Carbon–sulphur (C–S) bond forming reactions have gained importance in organic synthesis, as these reactions are the key steps in the formation of various biologically valuable compounds.1 Aryl sulfones are an important class of sulfur containing moieties which are found in many pharmaceuticals, agrochemicals and polymeric compounds (Fig. 1).2 Particularly, the bioactivity of aryl sulfones has immense importance in medicinal chemistry. Aryl sulfones show various pharmacological properties such as anti-tumour, anti-inflammatory, and anti-fungal activities, and also inhibit HIV-1 reverse transcriptase.3 Sulfone derivatives were found in cyclooxygenase-2 (COX-2) inhibitors4 which exhibit high antifungal and antibacterial activities.5 They also exhibit interesting chemical properties6 and are useful as intermediates in organic synthesis.7
image file: c5ra10291j-f1.tif
Fig. 1 Aryl sulfones containing molecules.

This broad utility has prompted significant efforts toward the synthesis of sulfone containing compounds. As a result of this, various methods have been developed for the synthesis of aryl sulfones such as nucleophilic substitution reaction of halide with thiol, followed by oxidation of the corresponding sulphide,8 sulfonylation of heterocycles with aryl sulfonyl chlorides via metal-catalyzed C–H bonds activation,9 Pd- or Cu-catalyzed coupling reactions between sodium sulfinates and aryl halides or aryl boronic acids10 and vinyl sulfones from terminal epoxides and sodium sulfinates.11 Various catalysts have been developed for the synthesis of sulfones.12 However, these methods have some drawbacks such as use of toxic or expensive transition metals, multi-step synthesis, low functional group tolerance, limited availability of substrates, low yields, use of expensive aryl halides, longer reaction times, and dry reaction conditions. Recently B. T. V. Srinivas et al. reported synthesis of diaryl sulfones from various boronic acids using Cu-catalyst.13 Fig. S1 depicts the various reported methods for the synthesis of aryl sulfones.

An arenediazonium salt is currently attracting much attention because of the ready availability of these compounds and the ease with which they can be synthesized. They are more reactive than aryl halides or boronic acids, making them good choice as arylating agents. Arenediazonium salts can be used in a range of various reactions, such as Suzuki–Miyaura,14 Stille,15 Sonogashira,16 or Mizoroki–Heck reactions.17 Here we report the synthesis of aryl sulfones using arenediazonium salts with CuI and N,N′-dimethylethylenediamine ligand in DMSO at 100 °C under inert atmosphere (Scheme 1).19


image file: c5ra10291j-s1.tif
Scheme 1 Model reaction between sodium p-toluenesulfinate and arenediazonium salt.

2 Results and discussion

Initially, various reaction conditions were optimized step by step for the model reaction between sodium p-toluenesulfinate and arenediazonium salt. Ligand plays a very crucial role in homogeneous catalysis with respect to product yield. Therefore, we carried out the model reaction with CuI as a catalyst in DMSO using various ligands. Here we screened four ligands such as N,N′-dimethylethylenediamine (L1), N,N,N′,N′-tetramethylethylenediamine (L2), bipyridine (L3) and 1,10-phenanthroline (L4) for model reaction along with CuI catalyst (Fig. S2). The obtained results are represented in Fig. S3. This clearly shows that L1 is a superior ligand than others giving excellent product yield along with CuI. We examined various Cu sources such as CuI, CuBr, Cu2O, Cu(OAc)2, CuSO4, Cu(Phen)(PPh3)2NO3 and Cu(acac)2 for the model reaction of sodium p-toluenesulfinate and arenediazonium salt and found that CuI is the best source of Cu as catalyst (Table 1, entries 1–7). Furthermore, we studied model reaction by using various solvents such as DMSO, DMF, toluene and H2O. DMSO solvent gave maximum yield of desired product (Table 1, entries 1, 8–10). We also studied the reaction in various bases and found K2CO3 as the most suitable base amongst the other bases such as NaHCO3, Na2CO3, K3PO4, Cs2CO3 and tBuONa (Table 1, entries 1, 11–15). The solvation of K+ ion is greater than that of Na+ ion due to the ionic size, which consequently increases the rate of reaction. In this reaction we used TBAI (tetrabutylammonium iodide), TBAB (tetrabutylammonium bromide), KI (potassium iodide) and KBr (potassium bromide) additives as halogen source to form halobenzene in situ.18 The arylation reaction was more efficient with the halogen source TBAI (Table 1, entries 1, 16–18). The optimum temperature was found to be 100 °C for the model reaction. Increase in temperature to 120 °C, did not improve the product yield. Significant decrease in the product yield was observed when the temperature was decreased to 80 °C (Table 1, entries 1, 19 and 20).
Table 1 Optimization of reaction parametersa
Entry Catalyst Solvent Base Additive Temperature (°C) Yieldb (%)
a Reaction conditions: sodium p-toluenesulfinate (1 mmol), arenediazonium salts (1.3 mol), Cu source (15 mol%), ligand (15 mol%), additive (1.3 mmol), base (3 mmol), solvent (2 mL), under N2.b Isolated yield.c Without ligand.
1 CuI DMSO K2CO3 TBAI 100 91
2 CuBr DMSO K2CO3 TBAI 100 72
3 Cu2O DMSO K2CO3 TBAI 100 59
4 Cu(OAc)2 DMSO K2CO3 TBAI 100 75
5 CuSO4 DMSO K2CO3 TBAI 100 68
6 Cu(Phen)(PPh3)2NO3 DMSO K2CO3 TBAI 100 56c
7 Cu(acac)2 DMSO K2CO3 TBAI 100 67
8 CuI DMF K2CO3 TBAI 100 26
9 CuI Toluene K2CO3 TBAI 100 20
10 CuI H2O K2CO3 TBAI 100 Trace
11 CuI DMSO NaHCO3 TBAI 100 56
12 CuI DMSO Na2CO3 TBAI 100 74
13 CuI DMSO K3PO4 TBAI 100 69
14 CuI DMSO Cs2CO3 TBAI 100 47
15 CuI DMSO tBuONa TBAI 100 Trace
16 CuI DMSO K2CO3 KBr 100 Trace
17 CuI DMSO K2CO3 TBAB 100 10
18 CuI DMSO K2CO3 KI 100 82
19 CuI DMSO K2CO3 TBAI 120 92
20 CuI DMSO K2CO3 TBAI 80 83


We also examined the effect of the catalytic amount and ligand concentration on the product yield of the model reaction by varying the amount of catalyst and ligand from 10 to 20 mol% (Fig. S4). Fig. S4 shows that increase in the catalyst and ligand concentration from 10 to 15 mol% increases the yield of the desired product. However increase in the catalyst and ligand concentration up to 20 mol% did not increase the product yield significantly. The amount of tetrabutylammonium iodide additive was also optimized by varying its concentration from 1.2 to 1.4 mmol. It was clear from the results depicted in Fig. S5 that the concentration of additive also plays an important role in the reaction, and the optimal concentration of tetrabutylammonium iodide for the model reaction was found to be 1.3 mmol. We also evaluated the exact required time for the model arylation reaction and the graph plotted in Fig. S6 clearly indicates that 24 h is the required time for the completion of reaction. All above experiments reveal that the optimised reaction conditions are sodium p-toluenesulfinate (1 mmol), arenediazonium salt (1.3 mol), CuI (15 mol%), L1 (15 mol%), TBAI (1.3 mmol), K2CO3 (3 mmol), DMSO (2 mL), 100 °C and 24 h under inert atmosphere.

After optimizing parameters such as catalyst, ligand, solvent, base, additive, concentration of catalyst, reaction temperature and time, we further investigated the catalytic activity for the coupling of structurally different arenediazonium salts and sodium p-toluenesulfinate and the results are summarized in Table 2. Arenediazonium salts with many valuable functional groups present on aromatic ring such as –OCH3, –Cl, –F, –CH3, and –NO2 groups were screened and it was found that substrates containing electron donating group deliver excellent products as compared to substrates containing withdrawing groups (Table 2, entries 2–10). The substituents at p-position exhibit greater reactivity than o- or m-position. We also carried out the reaction of disubstituted arenediazonium salts such as 3,5-dimethoxy, 3,5-dichloro, 3,4-dichloro and 2,4-dimethyl arenediazonium salts with sodium p-toluenesulfinate and obtained excellent yield of corresponding products (Table 2, entries 11–14). The substrate 4-phenyl arenediazonium salt smoothly coupled giving 74% yield of product (Table 2, entry 15).

Table 2 Reaction between sodium p-toluenesulfinate and arenediazonium saltsa
Entry Arenediazonium salts Products Yieldb (%)
a Reaction conditions: sodium p-toluenesulfinate (1 mmol), arenediazonium salts (1.3 mol), CuI (15 mol%), L1 (15 mol%), TBAI (1.3 mmol), K2CO3 (3 mmol), DMSO (2 mL), 100 °C, 24 h under N2.b Isolated yield.
1 image file: c5ra10291j-u1.tif image file: c5ra10291j-u2.tif 91
2 image file: c5ra10291j-u3.tif image file: c5ra10291j-u4.tif 89
3 image file: c5ra10291j-u5.tif image file: c5ra10291j-u6.tif 88
4 image file: c5ra10291j-u7.tif image file: c5ra10291j-u8.tif 79
5 image file: c5ra10291j-u9.tif image file: c5ra10291j-u10.tif 87
6 image file: c5ra10291j-u11.tif image file: c5ra10291j-u12.tif 83
7 image file: c5ra10291j-u13.tif image file: c5ra10291j-u14.tif 87
8 image file: c5ra10291j-u15.tif image file: c5ra10291j-u16.tif 76
9 image file: c5ra10291j-u17.tif image file: c5ra10291j-u18.tif 84
10 image file: c5ra10291j-u19.tif image file: c5ra10291j-u20.tif 81
11 image file: c5ra10291j-u21.tif image file: c5ra10291j-u22.tif 86
12 image file: c5ra10291j-u23.tif image file: c5ra10291j-u24.tif 84
13 image file: c5ra10291j-u25.tif image file: c5ra10291j-u26.tif 85
14 image file: c5ra10291j-u27.tif image file: c5ra10291j-u28.tif 72
15 image file: c5ra10291j-u29.tif image file: c5ra10291j-u30.tif 74


The plausible reaction mechanism for arylation of sulfones is illustrated in Fig. 2.


image file: c5ra10291j-f2.tif
Fig. 2 The plausible mechanism for the arylation of sulfones.

3 Conclusions

In summary, here we report the arylation of sulfones with arenediazonium salts using homogeneous copper catalysed system. Arenediazonium salts are the best alternatives to other environmentally hazardous or costly arylating agents and are used for the first time for arylation of sulfones. The methodology can tolerate many important substituted arenediazonium salts giving good to excellent yield of product.

Acknowledgements

The authors are thankful to the UGC-SAP, New Delhi, India for the award of fellowship.

Notes and references

  1. (a) T. Kondo and T. Mitsudo, Chem. Rev., 2000, 100, 3205 CrossRef CAS PubMed; (b) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011, 111, 1596 CrossRef CAS PubMed.
  2. (a) K. G. Liu, A. J. Robichaud, R. C. Bernotas, Y. Yan, J. R. Lo, M. Y. Zhang, Z. A. Hughes, C. Huselton, G.-M. Zhang, J. Y. Zhang, D. M. Kowal, D. L. Smith, L. E. Schechter and T. A. Comery, J. Med. Chem., 2010, 53, 7639 CrossRef CAS PubMed; (b) A. V. Ivachtchenko, E. S. Golovina, M. G. Kadieva, V. M. Kysil, O. D. Mitkin, S. E. Tkachenko and I. M. Okun, J. Med. Chem., 2011, 54, 8161 CrossRef CAS PubMed; (c) C. F. Sturino, G. O. Neill, N. Lachance, M. Boyd, C. Berthelette, M. Labelle, L. Li, B. Roy, J. Scheigetz, N. Tsou, Y. Aubin, K. P. Bateman, N. Chauret, S. H. Day, J. F. L. vesque, C. Seto, J. H. Silva, L. A. Trimble, M. C. Carriere, D. Denis, G. Greig, S. Kargman, S. Lamontagne, M. C. Mathieu, N. Sawyer, D. Slipetz, W. M. Abraham, T. Jones, M. McAuliffe, H. Piechuta, D. A. N. Griffith, Z. Wang, R. Zamboni, R. N. Young and K. M. Metters, J. Med. Chem., 2007, 50, 794 CrossRef CAS PubMed; (d) B. M. Trost, H. C. Shen and J. P. Surivet, J. Am. Chem. Soc., 2004, 126, 12565 CrossRef CAS PubMed; (e) M. Artico, R. Silvestri, E. Pagnozzi, B. Bruno, E. Novellino, G. Greco, S. Massa, A. Ettorre, A. G. Loi, F. Scintu and P. L. Colla, J. Med. Chem., 2000, 43, 188 CrossRef PubMed; (f) W. J. Michaely and G. W. Krattz, U.S. Pat. 4,780,127, 1988, Chem. Abstr., 1989, 111, 129017; (g) T. Kochi, S. Noda, K. Yoshimura and K. Nozaki, J. Am. Chem. Soc., 2007, 129, 8948 CrossRef CAS PubMed; (h) X. L. Wei, Y. Z. Wang, S. M. Long, C. Bobeczko and A. J. Epstein, J. Am. Chem. Soc., 1996, 118, 2545 CrossRef CAS.
  3. (a) G. L. Regina, A. Coluccia, A. Brancale, F. Piscitelli, V. Famiglini, S. Cosconati, G. Maga, A. Samuele, E. Gonzalez, B. Clotet, D. Schols, J. A. Este, E. Novellino and R. Silvestri, J. Med. Chem., 2012, 55, 6634 CrossRef PubMed; (b) S. Crosignani, A. Pretre, C. Jorand-Lebrun, G. Fraboulet, J. Seenisamy, J. K. Augustine, M. Missotten, Y. Humbert, C. Cleva, N. Abla, H. Aaff, O. Schott, M. Schneider, F. Burgat-Charvillon, D. Rivron, I. Namernig, J. F. Arrighi, M. Gaudet, S. C. Zimmerli, P. Juillard and Z. Joson, J. Med. Chem., 2011, 54, 7299 CrossRef CAS PubMed.
  4. (a) P. Prasit, Z. Wang, C. Brideau, C. C. Chan, S. Charleson, W. Cromlish, D. Ethier, J. F. Evans, W. Ford-Hutchinson, J. Y. Gauthier, R. Gordon, J. Guay, M. Gresser, S. Kargman, B. Kennedy, Y. Leblanc, S. Léger, J. Mancini, G. P. O'Neill, M. Ouellet, M. D. Percival, H. Perrier, D. Riendeau, I. Rodger, P. Tagari, M. Thérien, P. Vockers, E. Wong, L. J. Xu, R. N. Young, R. Zamboni, S. Boyce, N. Rupniak, M. Forrest, D. Visco and D. Patrick, Bioorg. Med. Chem. Lett., 1999, 9, 1773 CrossRef CAS; (b) F. Catella-Lawson, B. Mcadam, B. W. Morrison, S. Kapoor, D. Kujubu, L. Antes, K. C. Lasseter, H. Quan, B. J. Gertz and G. A. Fitzgerald, J. Pharmacol. Exp. Ther., 1999, 289, 735 CAS; (c) E. W. Ehrich, A. Dallob, I. de Lepeleire, A. van Hecken, D. Riendeau, W. Yuan, A. Porras, J. Wittreich, J. R. Seibold, P. de Schepper, D. R. Mehlisch and B. J. Gertz, Clin. Pharmacol. Ther., 1999, 65, 336 CrossRef CAS; (d) M. J. Langman, D. M. Jensen, D. J. Watson, S. E. Harper, P. L. Zhao, H. Quan, J. A. Bolognese and T. J. Simon, JAMA, J. Am. Med. Assoc., 1999, 282, 1929 CrossRef CAS PubMed.
  5. (a) I. C. Richards and P. S. Thomas, Pestic. Sci., 1990, 30, 275 CrossRef CAS PubMed; (b) W. M. Wolf, J. Mol. Struct., 1999, 474, 113 CrossRef CAS; (c) T. Otzen, E. G. Wempe, B. Kunz, R. Bartels, G. Lehwark-Yvetot, W. Hänsel, K. J. Schaper and J. K. Seydel, J. Med. Chem., 2004, 47, 240 CrossRef CAS PubMed , see also, The Merck Index, 13th edn, Merck: Rahway, NJ; Monograph no. 23, 24, 75, 2847, 3013, 3365, 4476, 7015, 7236, 8785, 8962, 9013, 9014, 9058, 9079, 9273 on CD-ROM.
  6. (a) M. A. Mitchell, M. Tomida, A. B. Padias, H. K. Hall, H. S. Lackritz, D. R. Robello, C. S. Willand and D. J. Williams, Chem. Mater., 1993, 5, 1044 CrossRef CAS; (b) T. Toshiaki and Y. Takeshi, JP Patent 2001260544, 2001, Chem. Abstr., 2001, 135, 264604.
  7. N. S. Simpkins, Sulfones in Organic Synthesis, Pergamon Press, Oxford, 1993 Search PubMed.
  8. (a) W. G. Trankle and M. E. Kopach, Org. Process Res. Dev., 2007, 11, 913 CrossRef CAS; (b) M. Jereb, Green Chem., 2012, 14, 3047 RSC; (c) B. Yu, A. H. Liu, L. N. He, B. Li, Z. F. Diao and Y. N. Li, Green Chem., 2012, 14, 957 RSC.
  9. (a) O. Saidi, J. Marafie, A. E. W. Ledger, P. M. Liu, M. F. Mahon, G. Kociok-Kohn, M. K. Whittlesey and C. G. Frost, J. Am. Chem. Soc., 2011, 133, 19298 CrossRef CAS PubMed; (b) Z. Y. Wu, H. Y. Song, X. L. Cui, C. Pi, W. W. Du and Y. J. Wu, Org. Lett., 2013, 15, 1270 CrossRef CAS PubMed.
  10. (a) K. M. Maloney, J. T. Kuethe and K. Linn, Org. Lett., 2011, 13, 102 CrossRef CAS PubMed; (b) S. Cacchi, G. Fabrizi, A. Goggoamani, L. M. Parisi and R. Bernini, J. Org. Chem., 2004, 69, 5608 CrossRef CAS PubMed; (c) S. Cacchi, G. Fabrizi, A. Goggiamani and L. M. Parisi, Org. Lett., 2002, 4, 4719 CrossRef CAS PubMed; (d) J. M. Baskin and Z. Wang, Org. Lett., 2002, 4, 4423 CrossRef CAS PubMed; (e) H. Suzuki and H. Abe, Tetrahedron Lett., 1995, 36, 6239 CrossRef CAS; (f) A. Kar, I. A. Sayyed, W. F. Lo, H. M. Kaiser, M. Beller and M. K. Tse, Org. Lett., 2007, 9, 3405 CrossRef CAS PubMed.
  11. (a) R. Chawla, R. Kapoor, A. K. Singh and L. D. S. Yadav, Green Chem., 2012, 14, 1308 RSC; (b) S. N. Murthy, B. Madhav, V. P. Reddy, K. R. Rao and Y. V. D. Nageswar, Tetrahedron Lett., 2009, 50, 5009 CrossRef PubMed; (c) N. Chumachenko and P. Sampson, Tetrahedron, 2006, 62, 45404548 CrossRef PubMed.
  12. (a) W. Zhu and D. Ma, J. Org. Chem., 2005, 70, 2696 CrossRef CAS PubMed; (b) D. Q. Maand Cai, Acc. Chem. Res., 2008, 41, 1450 CrossRef PubMed; (c) C. Shen, J. Xu, W. B. Yu and P. F. Zhang, Green Chem., 2014, 16, 3007 RSC.
  13. B. T. V. Srinivas, V. S. Rawat, K. Konda and B. Sreedhar, Adv. Synth. Catal., 2014, 356, 805 CrossRef CAS PubMed.
  14. (a) J. T. Kuethe and K. G. Childers, Adv. Synth. Catal., 2008, 350, 1577 CrossRef CAS PubMed; (b) F. X. Felpin, E. Fouquet and C. Zakri, Adv. Synth. Catal., 2009, 351, 649 CrossRef CAS PubMed; (c) M. B. Andrus and C. Song, Org. Lett., 2001, 3, 3761 CrossRef CAS PubMed.
  15. K. Kikukawa, K. Kono, F. Wada and T. Matsuda, J. Org. Chem., 1983, 48, 1333 CrossRef CAS.
  16. (a) B. Panda and T. K. Sarkar, Chem. Commun., 2010, 46, 3131 RSC; (b) G. Fabrizi, A. Goggiamani, A. Sferrazza and S. Cacchi, Angew. Chem., Int. Ed., 2010, 49, 4067 CrossRef CAS PubMed.
  17. (a) F. X. Felpin, E. Fouquet and C. Zakri, Adv. Synth. Catal., 2008, 350, 2559 CrossRef CAS PubMed; (b) F. X. Felpin, O. Ibarguren, L. N. Hardy and E. Fouquet, J. Org. Chem., 2009, 74, 1349 CrossRef CAS PubMed; (c) B. Schmidt and F. Hölter, Chem.–Eur. J., 2009, 15, 11948 CrossRef CAS PubMed; (d) J. C. Pastre and C. R. D. Correia, Adv. Synth. Catal., 2009, 351, 1217 CrossRef CAS PubMed.
  18. (a) A. Citterio and A. Arnoldi, Synth. Commun., 1981, 11, 639 CrossRef CAS PubMed; (b) M. Barbero, I. Dedani, S. Dughera and R. Fochi, J. Org. Chem., 1999, 64, 3448 CrossRef CAS PubMed; (c) A. Hubbard, T. Okazaki and K. K. Laali, J. Org. Chem., 2008, 73, 316 CrossRef CAS PubMed.
  19. Synthesis of diaryl sulfones: a mixture of sodium p-toluenesulfinate (1 mmol), arenediazonium salt (1.3 mmol), copper iodide (15 mol%), N,N′-dimethylethylenediamine (L1) (15 mol%), additive TBAI (1.3 mmol), K2CO3 (3 mmol) and 2 mL of DMSO in a sealed tube was heated to 100 °C under inert atmosphere for 24 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate and filtered through a plug of Celite. The filtrate was washed sequentially with H2O and brine the organic layer was separated, dried (Na2SO4), and concentrated under vacuum. The crude product was purified by column chromatography (silica gel; PE–EtOAc, 90[thin space (1/6-em)]:[thin space (1/6-em)]10). The products were analyzed by GC-MS, 1H NMR, and 13C NMR which are found consistent with those reported in the literature.

Footnote

Electronic supplementary information (ESI) available: Experimental procedures, mass, 1H NMR and 13C NMR spectra of synthesized compound. See DOI: 10.1039/c5ra10291j

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.