DOI:
10.1039/C5RA07754K
(Paper)
RSC Adv., 2015,
5, 54037-54045
Unimolecular tetrakis-piperidine-4-ol: an efficient ligand for copper and amine free Sonogashira coupling†
Received
28th April 2015
, Accepted 10th June 2015
First published on 10th June 2015
Abstract
A unimolecular tetrakis-piperidine-4-ol has been developed as an efficient ligand in combination with Pd/C for copper and amine free Sonogashira coupling. Various aryl and heteroaryl iodides were successfully coupled with aliphatic and aromatic alkynes to give internal alkynes in good to excellent yields.
Introduction
Transition metal-catalyzed cross coupling reactions to access C–C bond formation has revolutionized synthetic organic chemistry today. Among these reactions, Pd catalyzed C(sp2)–C(sp) coupling between vinyl halides/triflates and terminal alkynes (Sonogashira coupling reaction) has proven to be most effective for its simplicity and high tolerance toward various functional groups.1 The internal alkyne moieties are sought after as important precursors in diverse areas of chemistry such as sensors,2 non-linear optical materials/molecular electronics,3 dendrimers/polymers,4 natural products5–9 and heterocycles synthesis.10 The Sonogashira coupling has been the key step in the synthesis of many natural products having potential medicinal activities such as COPD biomarker desmosine 1a,6 anti-HIV agents like (−)-isatisine A 1b,7 (+)-lithospermic acid 1c
8 and anticancer agent (−)-quinocarcin 1d
9 as examples (Fig. 1).
 |
| Fig. 1 Examples of internal alkyne intermediates synthesized via Sonogashira coupling for natural product synthesis. | |
In 1975, Heck11 and Cassar12 independently reported Pd-catalyzed coupling between C(sp2) halide and terminal alkynes while Sonogashira and Hagihara13 demonstrated that Cu(I) iodide as a co-catalyst drastically improves the rate of alkynylation. However, the demerit of the Cu co-catalyzed Sonogashira coupling is the formation of by-product from oxidative coupling of alkynes via the Hay/Glaser reaction.14 As a result, the efficiency of reaction decreases coupled with wastage of terminal alkynes often prepared by multistep methods. To avoid this by-product, a variety of impressive modifications has been reported, such as use of a variety of ligands,15 solvents,16 phase transfer catalysts,17 biphasic versions,18 microwave media,19 polymer/solid supported Pd-catalyst.20 Among these, the use of ligands is found to be economical and effective if in catalytic quantities. Ligand has the control over the binding to the metal during catalytic cycle and hence affects the reactivity of coupling reactions. The chelation of ligand with metal depends on three major properties: (a) electron donating ability, (b) steric properties and (c) bite angle; which have significant impact on the coupling reaction.21 The use of an appropriate ligand is therefore of paramount importance. In earlier days sterically bulky and electron-rich phosphine ligands were used. However these ligands are toxic, expensive, difficult to synthesize, easily decompose at higher temperatures, moisture sensitive and difficult to handle. To overcome the drawback associated with phosphine ligands, many developed N-based ligands as they are inexpensive, water soluble, have low toxicity and show high catalytic activity of Pd-complexes for the coupling reaction. The stability of Pd–N system and ‘non-leaching’ nature offer better alternatives. Palladium catalysts derived from bidentate N,N- or N,O-ligands such as DABCO,15d,e BINAM,15f phenanthroline,15gN,N-dimethyl glycine,15h 8-hydroxy quinoline15i have been tested as possible alternatives to phosphines in Sonogashira coupling. Bidentate ligands enhance the reductive elimination step in catalytic cycle by stabilizing a tetrahedral geometry, thereby enhancing the overall rate of the reaction.22
Recently, we have reported the synthesis of unimolecular 4-hydroxy piperidines 2a–e (Fig. 2) via the cascade aza-Cope/aza-Prins cyclization from homoallylamines.23 These conveniently obtained ligands showed excellent catalytic activity in the Ullmann and Suzuki coupling.24 This promoted us to explore them for the C(sp2)–C(sp) coupling reaction (Sonogashira). We present our results in this paper.
 |
| Fig. 2 Ligands 2a–e prepared via the cascade aza-Cope/aza-Prins cyclization.23 | |
Results and discussion
The Sonogashira reaction was optimized using the model substrate iodobenzene 3 (1.0 mmol), phenylacetylene 4 (1.5 mmol, 1.5 equiv.) and Pd source as shown in Table 1. We tested the ligands 2a–e (1.0 mol%), using 10% Pd/C (1.0 mol%) in EtOH as solvent at 80 °C (Table 1, entries 1–5). Among them, the ligand 2e gave the best results (entry 5). Considering the common solvents used in Sonogashira coupling we checked DMA, CH3CN, DMSO, DMF, NMP, 1,4-dioxane and H2O at temperatures 80–120 °C (entries 6–12). We found EtOH was better (entry 5) giving 5g in 98% yield. We further examined various Pd-catalyst commonly used in this reaction (entries 13–18) and found Pd(PPh3)4 catalyzes the reaction similar to Pd/C (entry 5 vs. 18). Considering cost factor and ease of handling, we choose Pd/C for further optimization. Inspection of various inorganic and organic base additives (entries 19–27) indicated K2CO3 to be better (entry 5 vs. entries 19–27). Varying the ligand concentration 0.5 mol% (entry 28) or Pd/C to 0.5 mol% (entry 29) resulted in lower yields of 5g. The reaction without the ligand was very sluggish (18 h) and gave only 46% of 5g (entry 30). Thus, the use of Pd/C (1.0 mol%). Ligand 2e (1.0 mol%), K2CO3 (1.5 equiv.) in EtOH at 80 °C were chosen as optimum conditions.
Table 1 Optimization of Sonogashira coupling between iodobenzene 3 and phenylacetylene 4a

|
Sr. no. |
Catalyst (x mol%) |
Ligand (y mol%) |
Base (1.5 equiv.) |
Solvent |
Temp °C |
t/h |
Yieldb (%) 5g |
Reaction condition: iodobenzene 3 (1 mmol), phenylacetylene 4 (1.5 mmol), Pd/C (10% wt, 0.5–1.0 mol%), ligand (0.5–1.0 mol%), base (1.5 mmol), solvent (0.5 mL); reactions were carried out in pressure tube.
Isolated yield.
Without ligand.
|
1 |
Pd/C (1) |
2a (1) |
K2CO3 |
EtOH |
80 |
10 |
68 |
2 |
Pd/C (1) |
2b (1) |
K2CO3 |
EtOH |
80 |
12 |
68 |
3 |
Pd/C (1) |
2c (1) |
K2CO3 |
EtOH |
80 |
10 |
72 |
4 |
Pd/C (1) |
2d (1) |
K2CO3 |
EtOH |
80 |
12 |
85 |
5
|
Pd/C (1)
|
2e (1) |
K2CO3 |
EtOH
|
80
|
4
|
98
|
6 |
Pd/C (1) |
2e (1) |
K2CO3 |
DMA |
120 |
9 |
90 |
7 |
Pd/C (1) |
2e (1) |
K2CO3 |
CH3CN |
110 |
12 |
86 |
8 |
Pd/C (1) |
2e (1) |
K2CO3 |
DMSO |
120 |
5 |
75 |
9 |
Pd/C (1) |
2e (1) |
K2CO3 |
DMF |
110 |
24 |
43 |
10 |
Pd/C (1) |
2e (1) |
K2CO3 |
NMP |
100 |
20 |
30 |
11 |
Pd/C (1) |
2e (1) |
K2CO3 |
1,4-Dioxane |
80 |
48 |
27 |
12 |
Pd/C (1) |
2e (1) |
K2CO3 |
H2O |
80 |
48 |
20 |
13 |
Pd(OAc)2 (1) |
2e (1) |
K2CO3 |
EtOH |
80 |
4 |
73 |
14 |
Pd(TFA)2 (1) |
2e (1) |
K2CO3 |
EtOH |
80 |
4 |
89 |
15 |
Pd(dba)2 (1) |
2e (1) |
K2CO3 |
EtOH |
80 |
4 |
84 |
16 |
PdCl2 (1) |
2e (1) |
K2CO3 |
EtOH |
80 |
4 |
71 |
17 |
π-(Allyl PdCl2) (1) |
2e (1) |
K2CO3 |
EtOH |
80 |
28 |
34 |
18 |
Pd(PPh3)4 (1) |
2e (1) |
K2CO3 |
EtOH |
80 |
4 |
96 |
19 |
Pd/C (1) |
2e (1) |
K3PO4 |
EtOH |
80 |
12 |
93 |
20 |
Pd/C (1) |
2e (1) |
NaOH |
EtOH |
80 |
40 |
95 |
21 |
Pd/C (1) |
2e (1) |
Pyridine |
EtOH |
80 |
20 |
28 |
22 |
Pd/C (1) |
2e (1) |
Et3N |
EtOH |
80 |
20 |
49 |
23 |
Pd/C (1) |
2e (1) |
Cs2CO3 |
EtOH |
80 |
48 |
21 |
24 |
Pd/C (1) |
2e (1) |
Na2CO3 |
EtOH |
80 |
20 |
26 |
25 |
Pd/C (1) |
2e (1) |
DIEA |
EtOH |
80 |
72 |
49 |
26 |
Pd/C (1) |
2e (1) |
Piperidine |
EtOH |
80 |
48 |
55 |
27 |
Pd/C (1) |
2e (1) |
Pyrrolidine |
EtOH |
80 |
48 |
78 |
28 |
Pd/C (1) |
2e (0.5) |
K2CO3 |
EtOH |
80 |
4 |
68 |
29 |
Pd/C (0.5) |
2e (1) |
K2CO3 |
EtOH |
80 |
12 |
68 |
30 |
Pd/C (1) |
— |
K2CO3 |
EtOH |
80 |
18 |
46c |
The scope and limitation of this method was examined for coupling of iodobenzene 3 with a variety of terminal alkynes 4 with aliphatic or aryl groups (Scheme 1). Alkynes such as 1-heptyne, propargyl alcohols and 3-butyne-1-ol with free or protected OH group delivered corresponding internal alkynes 5a–5f in 69–97% yields. Aryl and heteroaryl alkynes delivered the coupled products 5g–5j in excellent yields of 91–96%. We next investigated substituted iodobenzenes with electron donating and withdrawing groups in reactions with a variety of terminal alkynes (both aliphatic and aryl) to provide the coupled products 5k–w in good to excellent yields. The reaction did not show any general trend of aryl substituents dependence based on electronic factors. Sterically demanding ortho-phenyl, Me, CF3 and NH2 substituted iodobenzenes also reacted well to give the coupled products 5x–ae in good to quantitative yields with alkynes both aliphatic and aryl. The meta-OMe substituted iodobenzene delivered the coupled product 5af in 78% yield. Surprisingly, the reaction of iodobenzene with TMS-acetylene and acetyl protected homopropargyl alcohol did not yield the coupled products 5ag
25 and 5ah respectively, probably due to their sensitivity. Also the reaction of arylbromides15j,19b produced the coupled products in low to moderate yields, 5k (22%), 5t (31%) and 5x (24%). The corresponding reactions of chlorobenzene with phenylacetylene 4 did not yield the coupled products under the present protocol that is similar to known literature reports.19b
 |
| Scheme 1 Sonogashira coupling of different iodo/bromobenzenes with a variety of alkynes. Reaction conditions: iodo/bromobenzene 3 (1.0 mmol), alkyne 4 (1.5 equiv.), K2CO3 (1.5 equiv.), EtOH (0.5 mL); reactions carried out in pressure tube. | |
Besides aromatic systems, we also examined the behaviour of heteroaromatic halides in Sonogashira reaction and found that these are also employable (Scheme 2). 3-Iodo pyridine 6a reacted well with terminal alkynes 4 having various alkyl or aryl groups to give the corresponding products 7a–7e in 84–94% yields. 2-Bromopyridine 6b reacted with phenylacetylene to furnish 7f in 66% yield after 24 h reaction.
 |
| Scheme 2 Sonogashira coupling of alkynes with 3-iodo and 2-bromopyridine. Reaction conditions: 6 (1.0 mmol), alkyne 4 (1.5 equiv.), K2CO3 (1.5 equiv.), EtOH (0.5 mL); reactions carried out in pressure. | |
We also considered recovery and reuse of Pd/C catalyst as shown in Scheme 3. Using the optimum conditions of Table 1, entry 5, we studied the activity of the recycled catalyst in the coupling of iodobenzene and phenylacetylene. We found that the Pd/C catalyst can be reused after filtration (Whatman no. 41 paper) and subsequent treatments such as washing with water, MeOH and drying. However, the activity of the recycled catalyst decreased after each run, though prolonged reaction time did result in full conversion in every repeated run (4, 6, 10 and 24 h, respectively). The addition of ligand and K2CO3 to the reused catalysts was necessary in every repeated run.
 |
| Scheme 3 Recycling of Pd/C over four runs. | |
Conclusions
In conclusion, we have successfully achieved the Sonogashira reaction of aryl or heteroaryliodo/bromo compounds with terminal alkynes without Cu co-catalyst and amine free in presence of 1 mol% Pd on charcoal and 1 mol% of the ligand 2e (40 examples). We have established that the optimum choice of the solvent, base and catalyst are crucial for the completion of the reactions. Our methodology provides efficient way to couple iodo/bromobenzene with a wide variety of aliphatic and arylterminal acetylenes. Besides this, the reaction conditions highlight the use of most readily available and easy to handle Pd/C catalyst providing also convenient and easy catalyst separation. The Pd/C catalyst can be recycled by a simple filtration and washing procedure and shows good activity even after four runs.
Experimental section
Flasks were oven or flame dried and cooled in desiccator. Solvents and reagents were purified by standard methods. Thin-layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO4 or under UV lamp. 1H and 13C NMR were recorded with a Bruker, AVANCE III 500 or 400 spectrometer and the chemical shifts are based on TMS peak at δ = 0.00 pm for proton NMR and CDCl3 peak at δ = 77.00 ppm (t) in carbon NMR. IR spectra were obtained on Perkin Elmer Spectrum One FT-IR spectrometer and samples were prepared by evaporation from CHCl3 on CsBr plates. High-resolution mass spectra (HRMS) were obtained using positive electrospray ionization by TOF method.
General procedure for the synthesis of internal alkynes 5a–ah and 7a–7f
To a solution of aryliodide or bromide 3 or 6 (1.0 mmol) in EtOH (0.5 mL) were added sequentially terminal alkyne 4 (1.5 mmol, 1.5 equiv.), K2CO3 (207.3 mg, 1.5 mmol, 1.5 equiv.), 10% Pd/C (1.1 mg, 0.01 mmol, 1 mol%) and ligand 2e (5.31 mg, 0.01 mmol, 1 mol%). The reaction mixture was refluxed at 80 °C for 4–24 h till the consumption of the arylhalide. Then the mixture was cooled to room temperature. After the removal of the solvent in vacuum, the residue was purified by silica gel column chromatography with petroleum ether–EtOAc (9
:
1 to 4
:
1) as eluent to give corresponding internal alkynes in good to excellent yields.
Hept-1-ynylbenzene (5a).
Colorless oil; yield 132.6 mg (77%); IR (CHCl3): ν = 3020, 2956, 2932, 2872, 1492, 1466, 1379, 1030, 701, 669 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.40–7.38 (m, 2H), 7.30–7.25 (m, 3H), 2.39 (t, J = 7.1 Hz, 2H), 1.64–1.59 (m, 2H), 1.47–1.39 (m, 2H), 1.38–1.33 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 131.5, 128.2, 127.4, 124.1, 90.5, 80.5, 31.1, 28.5, 22.2, 19.4, 14.0 ppm; HRMS (ESI-TOF) m/z calcd for C13H16Na [M + Na]+ 195.1144, found 195.1142.
3-Phenylprop-2-yn-1-ol (5b).
Yellow oil; yield 120.3 mg (91%); IR (CHCl3): ν = 3397, 2928, 2854, 1406, 1285, 1045, 959, 822 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.45–7.42 (m, 2H), 7.33–7.30 (m, 3H), 4.50 (s, 2H), 1.59 (br. s, 1H, OH) ppm; 13C NMR (125 MHz, CDCl3): δ = 131.7, 128.5, 128.3, 122.5, 87.1, 85.7, 51.0 ppm; HRMS (ESI-TOF): m/z calcd for C9H8ONa [M + Na]+ 155.0467, found 155.0465.
4-Phenylbut-3-yn-1-ol (5c).
Pale yellow oil; yield 141.8 mg (97%); IR (CHCl3): ν = 3394, 2918, 1599, 1490, 1442, 1332, 1278, 1177, 1047, 915, 846, 692 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.43–7.40 (m, 2H), 7.31–7.28 (m, 3H), 3.78 (t, J = 6.3 Hz, 2H), 2.69 (t, J = 6.3 Hz, 2H), 2.02 (br. s, 1H, OH) ppm; 13C NMR (100 MHz, CDCl3): δ = 131.6, 128.2, 127.9, 123.3, 86.3, 82.4, 61.1, 23.8 ppm; HRMS (ESI-TOF): m/z calcd for C10H11O [M + H]+ 147.0810, found 147.0804.
2-Methyl-4-phenylbut-3-yn-2-ol (5d).
Brown solid; yield 110.5 mg (69%), mp 44–46 °C, (lit.26 mp 51 °C); IR (CHCl3): ν = 3382, 2923, 2234, 1599, 1572, 1490, 1442, 1333, 1279, 1178, 1047, 915, 846, 692, 667 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.43–7.40 (m, 2H), 7.31–7.28 (m, 3H), 1.75 (br. s, 1H, OH), 1.62 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 131.6, 128.2, 122.7, 93.7, 82.1, 65.6, 31.5 ppm; HRMS (ESI-TOF): m/z calcd for C11H12ONa [M + Na]+ 183.0786, found 183.0779.
tert-Butyldimethyl (3-phenylprop-2-ynyloxy)silane (5e).
Colorless oil; yield 184.8 mg (75%); IR (CHCl3): ν = 3398, 2929, 2857, 1488, 1462, 1449, 1408, 1390, 1256, 1044, 838, 774, 701, 670 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.44–7.41 (m, 2H), 7.31–7.29 (m, 3H), 4.54 (s, 2H), 0.94 (s, 9H), 0.17 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 131.6, 128.2, 123.0, 87.9, 84.8, 52.3, 25.9, 18.3, −5.0 ppm; HRMS (ESI-TOF): m/z calcd for C15H22OSiK [M + K]+ 285.1071, found 285.1071.
tert-Butyldimethyl(4-phenylbut-3-ynyloxy)silane (5f).
Pale yellow oil; yield 218.8 mg (84%); IR (CHCl3): ν = 2954, 2929, 2857, 1599, 1490, 1471, 1387, 1256, 1107, 1057, 914, 838, 777, 691 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.39–7.36 (m, 2H), 7.27–7.24 (m, 3H), 3.81 (t, J = 7.1 Hz, 2H), 2.62 (t, J = 7.1 Hz, 2H), 0.90 (s, 9H), 0.09 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 131.6, 128.2, 127.6, 123.8, 87.2, 81.5, 62.0, 25.9, 23.8, 18.4, −5.3 ppm; HRMS (ESI-TOF): m/z calcd for C16H24OSiNa [M + Na]+ 283.1489, found 283.1475.
1,2-Diphenylethyne (5g).
Colorless solid; yield 171.1 mg (96%), mp 44–46 °C (lit.27 mp 57–61 °C); IR (CHCl3): ν = 3059, 2922, 1602, 1498, 1443, 1385, 1027, 916, 690, 666 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.56–7.51 (m, 4H), 7.38–7.31 (m, 6H) ppm; 13C NMR (100 MHz, CDCl3): δ = 131.6, 128.3, 128.2, 123.2, 89.3 ppm; HRMS (ESI-TOF): m/z calcd for C14H11 [M + H]+ 179.0855, found 179.0851.
1-(Phenylethynyl)naphthalene (5h).
Pale yellow oil; yield 210.0 mg (92%); IR (CHCl3): ν = 3057, 2955, 2928, 2857, 1598, 1586, 1576, 1506, 1489, 1442, 1397, 1333, 1305, 1252, 1160, 1146, 1069, 1024, 1013, 968, 913, 862, 798, 773, 689 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 8.46 (d, J = 8.3 Hz, 1H), 7.87 (t, J = 8.9 Hz, 2H), 7.79 (dd, J = 7.1, 0.9 Hz, 1H), 7.67 (dd, J = 7.8, 1.7 Hz, 2H), 7.65–7.59 (m, 1H), 7.57–7.49 (m, 1H), 7.47–7.41 (m, 1H), 7.41–7.36 (m, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 133.3, 133.2, 131.7, 130.4, 128.8, 128.4, 128.37, 128.3, 126.8, 126.4, 126.2, 125.3, 123.4, 120.9, 94.3, 87.5 ppm; HRMS (ESI-TOF): m/z calcd for C18H13 [M + H]+ 229.1017, found 229.1019.
2-Butyl-5-(phenylethynyl)thiophene (5i).
Dark yellow oil; yield 230.7 mg (96%); IR (CHCl3): ν = 3079, 3018, 2957, 2930, 2871, 2858, 2204, 1598, 1537, 1493, 1463, 1442, 1378, 1245, 1198, 1113, 1069, 1020, 912, 802, 689, 669 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.51–7.47 (m, 2H), 7.36–7.31 (m, 3H), 7.10 (d, J = 3.6 Hz, 1H), 6.68 (d, J = 3.6 Hz, 1H), 2.81 (t, J = 7.5 Hz, 2H), 1.69–1.63 (m, 2H), 1.43–1.37 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 148.3, 131.9, 131.3, 128.3, 128.1, 124.2, 123.2, 120.5, 92.2, 83.1, 33.6, 29.9, 22.1, 13.8 ppm; HRMS (ESI-TOF): m/z calcd for C16H17S [M + H]+ 241.1045, found 241.1048.
2-Butyl-5-(phenylethynyl)furan (5j).
Dark yellow oil; yield 204.1 mg (91%); IR (CHCl3): ν = 3017, 2959, 2932, 2873, 2209, 1604, 1538, 1485, 1466, 1380, 1303, 1151, 1100, 1017, 968, 912, 690, 668, 601 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.52–7.50 (m, 2H), 7.35–7.32 (m, 3H), 6.57 (d, J = 3.3 Hz, 1H), 6.02–6.00 (m, 1H), 2.65 (t, J = 7.6 Hz, 2H), 1.68–1.62 (m, 2H), 1.42–1.36 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 158.3, 135.2, 131.3, 128.4, 128.3, 122.6, 116.3, 106.4, 92.9, 80.0, 30.0, 28.0, 22.2, 13.8 ppm; HRMS (ESI-TOF): m/z calcd for C16H16OK [M + K]+ 263.0833, found 263.0840.
1-(Hept-1-ynyl)-4-methoxybenzene (5k).
Colorless oil; yield 153.7 mg (76%); IR (CHCl3): ν = 2956, 2932, 2860, 1607, 1572, 1510, 1464, 1442, 1378, 1289, 1247, 1173, 1106, 1036, 832, 662 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.33 (d, J = 8.9 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 3.79 (s, 3H), 2.38 (t, J = 7.1 Hz, 2H), 1.64–1.52 (m, 2H), 1.46–1.32 (m, 4H), 0.72 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 159.0, 132.8, 116.3, 113.8, 88.8, 80.2, 55.2, 31.1, 28.6, 22.2, 19.4, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for C14H19O [M + H]+ 203.1430, found 203.1426.
4-(4-Methoxyphenyl)but-3-yn-1-ol (5l).
Colorless oil; yield 119.8 mg (68%); IR (CHCl3): ν = 3245, 2926, 2855, 1512, 1414, 1290, 1283, 1250, 1181, 1107, 1046, 1032, 912, 838, 768, 666 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.35 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 3.81–3.79 (m, 5H), 2.68 (t, J = 6.2 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3): δ = 159.3, 133.0, 115.4, 113.9, 84.7, 82.4, 61.3, 55.3, 23.9 ppm; HRMS (ESI-TOF): m/z calcd for C11H13O2 [M + H]+ 177.0910, found 177.0907.
4-(4-Methoxyphenyl)-2-methylbut-3-yn-2-ol (5m).
Yellow solid; yield 146.5 mg (77%); mp = 50–52 °C, (lit.26 mp = 56 °C); IR (CHCl3): ν = 3411, 2981, 2932, 2840, 1606, 1511, 1463, 1376, 1251, 1171, 1032, 961, 908, 834, 670 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.35 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 1.61 (s, 6H) ppm; 13C NMR (100 MHz, CDCl3): δ = 159.5, 133.1, 114.8, 113.9, 92.4, 82.0, 65.7, 55.3, 31.6 ppm; HRMS (ESI-TOF): m/z calcd for C12H14O2Na [M + Na]+ 213.0886, found 213.0887.
tert-Butyl-[4-(4-methoxyphenyl)but-3-ynyloxy]dimethylsilane (5n).
Colorless oil; yield 287.6 mg (99%); IR (CHCl3): ν = 3006, 2955, 2931, 2856, 1607, 1510, 1464, 1289, 1248, 1172, 1106, 1036, 916, 835, 669 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.33 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 3.83–3.78 (m, 5H), 2.61 (t, J = 7.1 Hz, 2H), 0.92 (s, 9H), 0.09 (s, 6H) ppm; 13C NMR (100 MHz, CDCl3): δ = 159.1, 132.9, 115.9, 113.8, 85.5, 81.3, 62.1, 55.2, 25.9, 23.8, 18.4, −5.2 ppm; HRMS (ESI-TOF): m/z calcd for C17H26O2SiNa [M + Na]+ 313.1594, found 313.1592.
1-Methoxy-4-(phenylethynyl)benzene (5o).
Colorless oil; yield 179.1 mg (86%); IR (CHCl3): ν = 2959, 2936, 2840, 1606, 1511, 1455, 1440, 1387, 1289, 1249, 1181, 1108, 1070, 1030, 944, 917, 834, 813, 692, 667 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.52–7.47 (m, 4H), 7.36–7.31 (m, 3H), 6.88 (d, J = 8.6 Hz, 2H), 3.84 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 159.6, 133.0, 131.4, 128.3, 127.9, 123.6, 115.4, 114.0, 89.3, 88.0, 55.3 ppm; HRMS (ESI-TOF): m/z calcd for C15H12KO [M + K]+ 247.0520, found 247.0515.
1-(4-Methoxyphenylethynyl)naphthalene (5p).
Yellow oil; yield 206.7 mg (80%); IR (CHCl3): ν = 3056, 3011, 2951, 2934, 2836, 2210, 1605, 1585, 1575, 1510, 1464, 1440, 1396, 1302, 1287, 1250, 1173, 1148, 1106, 1070, 1035, 831, 799 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.44 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 7.1 Hz, 1H), 7.61–7.58 (m, 3H), 7.55–7.53 (m, 1H), 7.45 (t, J = 7.8 Hz, 1H), 6.93 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 159.7, 133.2, 133.1, 130.0, 128.4, 128.3, 126.6, 126.4, 126.3, 125.3, 121.2, 115.5, 114.1, 94.3, 86.2, 55.3 ppm; HRMS (ESI-TOF): m/z calcd for C19H15O [M + H]+ 259.1117, found 259.1120.
2-Butyl-5-(4-methoxyphenylethynyl)thiophene (5q).
Brown oil; yield 202.8 mg (75%); IR (CHCl3): ν = 2956, 2930, 2872, 1606, 1539, 1510, 1465, 1441, 1378, 1291, 1249, 1173, 1108, 1034, 832, 801, 667 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.43 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 3.6 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 3.6 Hz, 1H), 3.82 (s, 3H), 2.79 (t, J = 7.6 Hz, 2H), 1.69–1.61 (m, 2H), 1.44–1.33 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 159.6, 147.8, 132.8, 131.4, 124.1, 120.9, 115.3, 114.0, 92.2, 81.7, 55.3, 33.6, 29.9, 22.1, 13.8 ppm; HRMS (ESI-TOF): m/z calcd for C17H19OS [M + H]+ 271.1151, found 271.1154.
tert-Butyldimethyl(4-p-tolylbut-3-ynyloxy)silane (5r).
Yellow oil; yield 178.4 mg (65%); IR (CHCl3): ν = 3005, 2955, 2931, 2857, 1607, 1510, 1464, 1290, 1248, 1172, 1106, 1036, 916, 835, 776, 669 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.28 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 3.81 (t, J = 7.1 Hz, 2H), 2.61 (t, J = 7.1 Hz, 2H), 2.33 (s, 3H), 0.91 (s, 9H), 0.09 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 137.6, 131.4, 128.9, 120.7, 86.3, 81.6, 62.0, 25.9, 23.8, 21.4, 18.4, −5.2 ppm; HRMS (ESI-TOF): m/z calcd for C17H26OSiNa [M + Na]+ 297.1645, found 297.1643.
1-Methyl-4-(phenylethynyl)benzene (5s).
White solid; yield 157.6 mg (82%); mp 61–63 °C (lit.28 mp 70 °C); IR (CHCl3): ν = 3079, 3050, 2937, 1595, 1569, 1510, 1441, 1388, 1105, 1070, 1044, 968, 949, 916, 873, 818, 690 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.54–7.51 (m, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.37–7.31 (m, 3H), 7.16 (d, J = 7.8 Hz, 2H), 2.37 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 138.4, 132.5, 131.5, 129.1, 128.3, 128.1, 123.5, 120.2, 89.5, 88.7, 21.5 ppm; HRMS (ESI-TOF): m/z calcd for C15H13 [M + H]+ 193.1017, found 193.1008.
1-(Hept-1-ynyl)-4-nitrobenzene (5t).
Yellow oil; yield 195.5 mg (90%); IR (CHCl3): ν = 2959, 2932, 2864, 1595, 1519, 1493, 1466, 1343, 1307, 1286, 1175, 1108, 1021, 854, 751, 689 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.14 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 2.43 (t, J = 7.1 Hz, 2H), 1.66–1.59 (m, 2H), 1.46–1.34 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 146.5, 132.2, 131.2, 123.5, 96.8, 79.3, 31.1, 28.1, 22.2, 19.5, 13.9 ppm; HRMS (ESI-TOF): m/z calcd for C13H16NO2 [M + H]+ 218.1176, found 218.1177.
4-(4-Nitrophenyl)but-3-yn-1-ol (5u).
Yellow solid; yield 137.7 mg (72%); mp 72–74 °C (lit.29 mp 76–78 °C); IR (CHCl3): ν = 3389, 3108, 3020, 2939, 1594, 1517, 1493, 1344, 1308, 1286, 1261, 1175, 1107, 1045, 855, 751, 690 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.16 (d, J = 8.9 Hz, 2H), 7.55 (d, J = 8.9 Hz, 2H), 3.88–3.84 (m, 2H), 2.74 (t, J = 6.3 Hz, 2H), 1.81 (br. s, 1H, OH) ppm. 13C NMR (125 MHz, CDCl3): δ = 146.9, 132.4, 130.4, 123.5, 92.6, 80.8, 60.9, 23.9 ppm; HRMS (ESI-TOF): m/z calcd for C10H10NO3 [M + H]+ 192.0655, found 192.0651.
tert-Butyldimethyl[4-(4-nitrophenyl)but-3-ynyloxy]silane (5v).
Yellow solid; yield 250.5 mg (82%); mp 48–51 °C; IR (CHCl3): ν = 2949, 2929, 2888, 2859, 1595, 1519, 1493, 1472, 1346, 1310, 1286, 1256, 1110, 1020, 850, 839, 621 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 8.15 (d, J = 8.9 Hz, 2H), 7.52 (d, J = 8.9 Hz, 2H), 3.83 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 0.91 (s, 9H), 0.09 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 146.7, 132.3, 130.8, 123.5, 93.6, 80.1, 61.5, 25.8, 24.0, 18.3, −5.3 ppm; HRMS (ESI-TOF): m/z calcd for C16H24NO3Si [M + H]+ 306.1520, found 306.1521.
1-Nitro-4-(phenylethynyl)benzene (5w).
Yellow solid; yield 178.6 mg (80%); mp 108–110 °C (lit.30 mp 119–120 °C); IR (CHCl3): ν = 3103, 3081, 2930, 2849, 1594, 1538, 1510, 1442, 1353, 1308, 1287, 1175, 1108, 1094, 1071, 1020, 921, 856, 748, 689, 507 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.22 (d, J = 8.9 Hz, 2H), 7.67 (d, J = 8.9 Hz, 2H), 7.57–7.55 (m, 2H), 7.41–7.38 (m, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 147.0, 132.3, 131.8, 130.3, 129.3, 128.5, 123.6, 122.1, 94.7, 87.5 ppm; HRMS (ESI-TOF): m/z calcd for C14H10NO2 [M + H]+ 224.0706, found 224.0706.
2-(Hept-1-ynyl)biphenyl (5x).
Colorless oil; yield 208.6 mg (84%); IR (CHCl3): ν = 3020, 2931, 2705, 1462, 1387, 1252, 1168, 1071, 1041, 1033, 1019, 904, 778, 701, 613 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.60–7.57 (m, 2H), 7.52–7.49 (m, 1H), 7.42–7.38 (m, 2H), 7.38–7.32 (m, 2H), 7.31–7.27 (m, 2H), 2.28 (t, J = 7.0 Hz, 2H), 1.48–1.44 (m, 2H), 1.29–1.24 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 143.6, 140.8, 132.9, 129.4, 129.3, 127.8, 127.7, 127.2, 126.9, 122.4, 93.5, 80.1, 30.9, 28.1, 22.2, 19.5, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for C19H20OK [M + K]+ 287.1197, found 287.1199.
4-(Biphenyl-2-yl)but-3-yn-1-ol (5y).
Pale yellow oil; yield 222.2 mg (quant.); IR (CHCl3): ν = 3349, 3060, 3022, 2927, 1500, 1476, 1433, 1384, 1328, 1261, 1182, 1097, 1044, 950, 916, 845, 700, 668 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.57–7.51 (m, 3H), 7.46–7.42 (m, 2H), 7.39–7.35 (m, 3H), 7.30–7.28 (m, 1H), 3.62–3.56 (m, 2H), 2.55 (t, J = 6.0 Hz, 2H), 1.49 (br. s, 1H, OH) ppm; 13C NMR (125 MHz, CDCl3): δ = 144.0, 140.9, 132.7, 129.3, 129.1, 128.1, 127.9, 127.5, 127.1, 121.7, 89.5, 82.3, 60.9, 24.0 ppm; HRMS (ESI-TOF): m/z calcd for C16H15O [M + H]+ 223.1117, found 223.1117.
4-(Biphenyl-2-yl)-2-methylbut-3-yn-2-ol (5z).
Pale yellow oil; yield 167.8 mg (71%); IR (CHCl3): ν = 3362, 2979, 2928, 2854, 1477, 1449, 1432, 1376, 1363, 1276, 1164, 961, 909, 700 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.57 (d, J = 7.2 Hz, 2H), 7.52 (d, J = 7.7 Hz, 1H), 7.43–7.34 (m, 5H), 7.31–7.27 (m, 1H), 1.6 (br. s, 1H, OH), 1.46 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 144.1, 140.5, 132.7, 129.3, 129.26, 128.5, 127.8, 127.4, 127.0, 121.0, 96.5, 82.0, 65.6, 31.0 ppm; HRMS (ESI-TOF): m/z calcd for C17H16ONa [M + Na]+ 259.1093, found 259.1090.
[4-(Biphenyl-2-yl)but-3-ynyloxy]tert-butyldimethylsilane (5aa).
Pale yellow oil; yield 279.3 mg (83%); IR (CHCl3): ν = 3012, 2954, 2929, 2857, 1473, 1434, 1388, 1361, 1256, 1104, 1057, 913, 837, 699, 668 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.58 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 7.7 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 7.36–7.28 (m, 4H), 3.67 (t, J = 7.4 Hz, 2H), 2.50 (t, J = 7.4 Hz, 2H), 0.90 (s, 9H), 0.05 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 143.7, 140.7, 133.0, 129.4, 129.3, 127.9, 127.8, 127.2, 126.9, 122.0, 89.9, 81.2, 61.8, 25.9, 23.9, 18.3, −5.3 ppm; HRMS (ESI-TOF): m/z calcd for C22H28OSiNa [M + Na]+ 359.1802, found 359.1801.
2-(Phenylethynyl)biphenyl (5ab).
Colorless oil; yield 211.1 mg (83%); IR (CHCl3): ν = 3058, 3022, 2928, 1598, 1491, 1473, 1449, 1433, 1385, 1310, 1261, 1180, 1160, 1103, 1070, 1048, 949, 914, 874, 736, 699, 690, 667 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.70–7.66 (m, 3H), 7.49–7.41 (m, 5H), 7.41–7.39 (m, 3H), 7.37–7.28 (m, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 143.9, 140.5, 132.8, 131.3, 129.5, 129.4, 128.5, 128.2, 128.1, 127.9, 127.4, 127.0, 123.4, 121.6, 92.2, 89.4 ppm; HRMS (ESI-TOF): m/z calcd for C20H15 [M + H]+ 255.1174, found 255.1162.
1-Methyl-2-(phenylethynyl)benzene (5ac).
Colorless oil; yield 192.2 (quant.); IR (CHCl3): ν = 3061, 3023, 2923, 2854, 1601, 1571, 1494, 1455, 1443, 1380, 1313, 1159, 1104, 1070, 943, 913, 715, 690 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.60–7.58 (m, 2H), 7.55 (d, J = 7.6 Hz, 1H), 7.42–7.37 (m, 3H), 7.28 (d, J = 4.0 Hz, 2H), 7.24–7.21 (m, 1H), 2.57 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 140.2, 131.8, 131.5, 129.4, 128.3, 128.28, 128.2, 125.6, 123.5, 123.0, 93.3, 88.3, 20.7 ppm; HRMS (ESI-TOF): m/z calcd for C15H13 [M + H]+ 193.1017, found 193.1014.
1-(Phenylethynyl)-2-(trifluoromethyl)benzene (5ad).
Colorless oil; yield 192.1 mg (78%); IR (CHCl3): ν = 2927, 2857, 1605, 1497, 1451, 1321, 1313, 1262, 1173, 1135, 1111, 1057, 1033, 765, 691 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 7.70–7.66 (m, 2H), 7.58–7.55 (m, 2H), 7.54–7.50 (m, 1H), 7.44–7.38 (m, 1H), 7.38–7.36 (m, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 133.7, 131.7, 131.4, 128.8, 128.4, 127.9, 125.9 (J = 5.0 Hz), 124.7, 122.7, 122.5, 121.6, 94.9, 85.3 ppm; 19F NMR (400 MHz, CDCl3): −62.4 ppm; HRMS (ESI-TOF) m/z calcd for C15H10F3 [M + H]+ 247.0735, found 247.0742.
2-(Phenylethynyl)aniline (5ae).
Pale yellow solid; yield 114 mg (59%); mp 82–84 °C, (lit.15j mp 88–89 °C); IR (CHCl3): ν = 3383, 2959, 2922, 2851, 1493, 1483, 1455, 1312, 1258, 1153, 691 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.56–7.52 (m, 2H), 7.39–7.37 (m, 1H), 7.37–7.31 (m, 3H), 7.17–7.12 (m, 1H), 6.80–6.74 (m, 2H) ppm; 13C NMR (125 MHz, CDCl3): δ = 146.9, 132.2, 131.5, 129.7, 128.3, 128.2, 123.2, 118.5, 114.8, 108.5, 94.8, 85.7 ppm; HRMS (ESI-TOF): m/z calcd for C14H11NNa [M + Na]+ 216.0784, found 216.0781.
1-Methoxy-3-(phenylethynyl)benzene (5af).
Brown oil; yield 162.4 (78%); IR (CHCl3): ν = 2926, 2854, 1604, 1583, 1495, 1465, 1323, 1283, 1235, 1184, 1159, 1122, 1046, 966, 931, 689 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 7.57–7.53 (m, 2H), 7.39–7.34 (m, 3H), 7.27 (t, J = 7.8 Hz, 1H), 7.17–7.14 (m, 1H), 7.09 (dd, J = 2.5, 1.5 Hz, 1H), 6.93–6.90 (m, 1H), 3.84 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 159.3, 131.6, 129.4, 128.3, 128.27, 124.2, 124.15, 123.2, 116.3, 114.9, 89.3, 89.2, 55.2 ppm; HRMS (ESI-TOF): m/z calcd for C15H13O [M + H]+ 209.0966, found 209.0965.
3-(Hept-1-ynyl)pyridine (7a).
Dark yellow oil; yield 145.5 mg (84%); IR (CHCl3): ν = 3016, 2955, 2937, 2871, 2859, 2800, 1508, 1456, 1440, 1329, 1200, 1188, 1105, 1023, 834, 805, 778, 730, 706, 670 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.62 (s, 1H), 8.51–8.46 (m, 1H), 7.67–7.64 (m, 1H), 7.21–7.19 (m, 1H), 2.41 (t, J = 7.2 Hz, 2H), 1.64–1.46 (m, 2H), 1.45–1.34 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ = 152.3, 147.8, 138.4, 122.9, 121.2, 94.2, 77.3, 31.1, 28.2, 22.2, 19.4, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for C12H16N [M + H]+ 174.1277, found 174.1277.
4-(Pyridin-3-yl)but-3-yn-1-ol (7b).
Dark yellow oil; yield 138.3 mg (94%); IR (CHCl3): ν = 3375, 2935, 2923, 2885, 1566, 1478, 1410, 1332, 1218, 1188, 1122, 1057, 1027, 925, 847, 808, 705, 635 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.62 (s, 1H), 8.47 (d, J = 4.8 Hz, 1H), 7.68–7.66 (m, 1H), 7.21 (dd, J = 7.8, 4.9 Hz, 1H), 3.83 (t, J = 6.3 Hz, 2H), 2.70 (t, J = 6.3 Hz, 2H), 2.0 (br. s, 1H, OH) ppm; 13C NMR (125 MHz, CDCl3): δ = 152.2, 148.0, 138.7, 123.0, 120.7, 90.6, 78.8, 60.8, 23.8 ppm; HRMS (ESI-TOF): m/z calcd for C9H10NO [M + H]+ 148.0757, found 148.0758.
2-Methyl-4-(pyridin-3-yl)but-3-yn-2-ol (7c).
Colorless solid; yield 138.6 mg (86%); mp 43–46 °C (lit.31 mp = 53 °C); IR (CHCl3): ν = 3376, 2982, 2931, 2860, 1588, 1568, 1478, 1409, 1377, 1361, 1328, 1278, 1192, 1169, 1098, 1046, 1026, 966, 908, 808, 704, 633 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.72 (s, 1H), 8.50–8.45 (m, 1H), 7.69 (dd, J = 7.9, 1.3 Hz, 1H), 7.24–7.21 (m, 1H), 1.61 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 151.9, 148.0, 138.8, 123.1, 120.2, 98.1, 78.3, 65.0, 31.3 ppm; HRMS (ESI-TOF): m/z calcd for C10H12ON [M + H]+ 162.0919, found 162.0916.
3-[4-(tert-Butyldimethylsilyloxy)but-1-ynyl]pyridine (7d).
Dark yellow oil; yield 240.5 mg (92%); IR (CHCl3): ν = 2955, 2930, 2904, 2884, 2858, 1562, 1473, 1464, 1408, 1389, 1362, 1257, 1186, 1108, 1058, 1024, 917, 838, 806, 777, 706, 667 cm−1; 1H NMR (500 MHz, CDCl3/TMS): δ = 8.62 (s, 1H), 8.49–8.46 (m, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.21 (dd, J = 7.8, 4.9 Hz, 1H), 3.82 (t, J = 6.9 Hz, 2H), 2.64 (t, J = 6.9 Hz, 2H), 0.91 (s, 9H), 0.09 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3): δ = 152.3, 148.0, 138.5, 122.9, 120.9, 91.0, 78.3, 61.7, 25.9, 23.8, 18.3, −5.3 ppm; HRMS (ESI-TOF): m/z calcd for C15H24NOSi [M + H]+ 262.1622, found 262.1621.
3-(Phenylethynyl)pyridine (7e).
Yellow crystalline solid; yield 166.7 mg (93%); mp 43–45 °C; IR (CHCl3): ν = 3074, 2949, 2927, 2854, 1601, 1559, 1493, 1474, 1442, 1408, 1330, 1260, 1186, 1119, 1097, 1070, 1038, 952, 915, 805, 773, 705, 691 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 8.77–8.76 (m, 1H), 8.55 (dd, J = 4.9, 1.6 Hz, 1H), 7.82–7.79 (m, 1H), 7.57–7.53 (m, 2H), 7.39–7.35 (m, 3H), 7.30–7.27 (m, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 152.2, 148.5, 138.4, 131.7, 128.8, 128.4, 123.0, 122.5, 120.5, 92.6, 85.9 ppm; HRMS (ESI-TOF): m/z calcd for C13H10N [M + H]+ 180.0813, found 180.0807.
2-(Phenylethynyl)pyridine (7f).
Brown oil; yield 118.3 mg (66%); IR (CHCl3): ν = 2926, 2854, 1582, 1561, 1492, 1463, 1428, 1377, 1260, 1158, 1046, 913, 776, 690, 669 cm−1; 1H NMR (400 MHz, CDCl3/TMS): δ = 8.63 (d, J = 4.4 Hz, 1H), 7.71 (td, J = 7.7, 1.7 Hz, 1H), 7.61 (dd, J = 6.5, 2.1 Hz, 2H), 7.55 (d, J = 7.8 Hz, 1H), 7.38–7.35 (m, 3H), 7.28–7.24 (m, 1H) ppm; 13C NMR (125 MHz, CDCl3): δ = 149.7, 143.2, 136.5, 132.1, 129.1, 128.4, 127.2, 122.8, 122.2, 89.9, 88.2 ppm; HRMS (ESI-TOF): m/z calcd for C13H10N [M + H]+ 180.0808, found 180.0803.
Acknowledgements
We thank the Council of Scientific and Industrial Research (CSIR), New Delhi, Grant no. 02(0158)/13/EMR-II for financial support. P.H.P. thanks University Grants Commission (UGC) for a research fellowship.
Notes and references
-
(a) K. Sonogashira, J. Organomet. Chem., 2002, 653, 46 CrossRef CAS
;
(b) E. Negishi and L. Anastasia, Chem. Rev., 2003, 103, 1979 CrossRef CAS PubMed
;
(c) H. Doucet and J.-C. Hierso, Angew. Chem., Int. Ed., 2007, 46, 834 CrossRef CAS PubMed
;
(d) R. Chinchilla and C. Nájera, Chem. Rev., 2007, 107, 874 CrossRef CAS PubMed
;
(e) R. Chinchilla and C. Nájera, Chem. Soc. Rev., 2011, 40, 5084 RSC
;
(f) M. Bakherad, Appl. Organomet. Chem., 2013, 27, 125 CrossRef CAS
;
(g) A. M. Thomas, A. Sujatha and G. Anilkumar, RSC Adv., 2014, 4, 21688 RSC
;
(h) M. Karak, L. C. A. Barbosa and G. C. Hargaden, RSC Adv., 2014, 4, 53442 RSC
.
-
(a)
Supramolecular Photosensitive and Electroactive Materials, ed. H. S. Nalwa, Academic Press, San Diego, CA, 2001 Search PubMed
;
(b) J.-M. Fang, S. Selvi, J.-H. Liao, Z. Slanina, C.-T. Chen and P.-T. Chou, J. Am. Chem. Soc., 2004, 126, 3559 CrossRef CAS PubMed
;
(c) C. Devadoss, P. Bharathi and J. S. Moore, J. Am. Chem. Soc., 1996, 118, 9635 CrossRef CAS
.
-
(a) L. Brunsveld, E. W. Meijer, R. B. Prince and J. S. Moore, J. Am. Chem. Soc., 2001, 123, 7978 CrossRef CAS PubMed
;
(b) O. Mongin, L. Porres, L. Moreaux, J. Mertz and M. Blanchard-Desce, Org. Lett., 2002, 4, 719 CrossRef CAS PubMed
;
(c) K. Kondo, S. Yasuda, T. Sakaguchi and M. Miya, J. Chem. Soc., Chem. Commun., 1995, 55 RSC
;
(d) L.-T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken and C. W. Spangler, J. Phys. Chem., 1991, 95, 10643 CrossRef CAS
;
(e) J. M. Tour, L. Jones II, D. L. Pearson, J. J. S. Lamba, T. P. Burgin, G. M. Whitesides, D. L. Allara, A. N. Parikh and S. V. Atre, J. Am. Chem. Soc., 1995, 117, 9529 CrossRef CAS
.
-
(a) O. Mongin, C. Papamicaël, N. Hoyler and A. Gossauer, J. Org. Chem., 1998, 63, 5568 CrossRef CAS
;
(b) Y. Tobe, N. Utsumi, A. Nagano and K. Naemura, Angew. Chem., Int. Ed., 1998, 37, 1285 CrossRef CAS
;
(c) K. Onitsuka, M. Fujimoto, N. Ohshiro and S. Takahashi, Angew. Chem., Int. Ed., 1999, 38, 689 CrossRef CAS
;
(d) B. Li, Y. Fu, Y. Han and Z. Bo, Macromol. Rapid Commun., 2006, 27, 1355 CrossRef CAS
;
(e) D.-J. Bak, S.-C. Han, S.-H. Jin and J.-W. Lee, Bull. Korean Chem. Soc., 2011, 32, 3211 CrossRef CAS
;
(f) T. Hagiwara, Y. Murano, Y. Watanabe, T. Hoshi and T. Sawaguchi, Tetrahedron Lett., 2012, 53, 2805 CrossRef CAS
.
-
(a) K. C. Nicolaou and W.-M. Dai, Angew. Chem., Int. Ed., 1991, 30, 1387 CrossRef
;
(b) J. W. Grissom, G. U. Gunawardena, D. Klingberg and D. Huang, Tetrahedron, 1996, 52, 6453 CrossRef CAS
;
(c) M. de Kort, V. Correa, A. R. P. M. Valentijn, G. A. vanderMarel, B. V. L. Potter, C. W. Taylor and J. H. van Boom, J. Med. Chem., 2000, 43, 3295 CrossRef CAS PubMed
;
(d) P. Lang, G. Magnin, G. Mathis, A. Burger and J.-F. Biellmann, J. Org. Chem., 2000, 65, 7825 CrossRef CAS PubMed
;
(e) D. Wang and S. Gao, Org. Chem. Front., 2014, 1, 556 RSC
.
- T. Usuki, H. Yamada, T. Hayashi, H. Yanuma, Y. Koseki, N. Suzuki, Y. Masuyama and Y. Y. Lin, Chem. Commun., 2012, 48, 3233 RSC
.
- P. Patel and C. V. Ramana, J. Org. Chem., 2012, 77, 10509 CrossRef CAS PubMed
.
- J. Fischer, G. P. Savage and M. J. Coster, Org. Lett., 2011, 13, 3376 CrossRef CAS PubMed
.
-
(a) H. Chiba, S. Oishi, N. Fujii and H. Ohno, Angew. Chem., Int. Ed., 2012, 51, 9169 CrossRef CAS PubMed
;
(b) H. Chiba, Y. Sakai, A. Ohara, S. Oishi, N. Fujii and H. Ohno, Chem.–Eur. J., 2013, 19, 8875 CrossRef CAS PubMed
.
-
(a) S. Fukuoka, T. Naito, H. Sekiguchi, T. Somete and A. Mori, Heterocycles, 2008, 76, 819 CrossRef CAS
;
(b) M. M. Heravi and S. Sadjadi, Tetrahedron, 2009, 65, 7761 CrossRef CAS
;
(c) H. B. Bang, S. Y. Han, D. H. Choi, J. W. Hwang and J.-G. Jun, ARKIVOC, 2009, ii, 112 Search PubMed
;
(d) A. R. Rosário, R. F. Schumacher, B. M. Gay, P. H. Menezes and G. Zeni, Eur. J. Org. Chem., 2010, 5601 CrossRef
.
- H. A. Dieck and F. R. Heck, J. Organomet. Chem., 1975, 93, 259 CrossRef CAS
.
- L. Cassar, J. Organomet. Chem., 1975, 93, 253 CrossRef CAS
.
- K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975, 16, 4467 CrossRef
.
-
(a) A. S. Hay, J. Org. Chem., 1962, 27, 3320 CrossRef CAS
;
(b) C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 2, 422 CrossRef
.
-
(a) C. Yi and R. Hua, J. Org. Chem., 2006, 71, 2535 CrossRef CAS PubMed
;
(b) M. R. Buchmeiser, T. Schareina, R. Kempe and K. Wurst, J. Organomet. Chem., 2001, 634, 39 CrossRef CAS
;
(c) R. A. Batey, M. Shen and A. J. Lough, Org. Lett., 2002, 4, 1411 CrossRef CAS PubMed
;
(d) J.-H. Li, X.-C. Hu, Y. Liang and Y.-X. Xie, Tetrahedron, 2006, 62, 31 CrossRef CAS
;
(e) J.-H. Li, J.-L. Li, D.-P. Wang, S.-F. Pi, Y.-X. Xie, M.-B. Zhang and X.-C. Hu, J. Org. Chem., 2007, 72, 2053 CrossRef CAS PubMed
;
(f) K. G. Thakur, E. A. Jaseer, A. B. Naidu and G. Sekar, Tetrahedron Lett., 2009, 50, 2865 CrossRef CAS
;
(g) D. Yang, B. Li, H. Yang, H. Fu and L. Hu, Synlett, 2011, 702 CAS
;
(h) D. Ma and F. Liu, Chem. Commun., 2004, 1934 RSC
;
(i) M. Wu, J. Mao, J. Guo and S. Ji, Eur. J. Org. Chem., 2008, 4050 CrossRef CAS
;
(j) C.-H. Lin, Y.-J. Wang and C.-F. Lee, Eur. J. Org. Chem., 2010, 4368 CAS
.
-
(a) T. Fukuyama, M. Shinmen, S. Nishitani, M. Sato and I. Ryu, Org. Lett., 2002, 4, 1691 CrossRef CAS PubMed
;
(b) M. Alami, B. Crousse and F. Ferri, J. Organomet. Chem., 2001, 624, 114 CrossRef CAS
;
(c) S. Thorand and N. Krause, J. Org. Chem., 1998, 63, 8551 CrossRef CAS
;
(d) J. Gil-Moltó and C. Nájera, Eur. J. Org. Chem., 2005, 4073 CrossRef
;
(e) M. Pal, V. Subramanian, K. Parasuraman and K. R. Yeleswarapu, Tetrahedron, 2003, 59, 9563 CrossRef CAS
;
(f) G. Zhang, Synlett, 2005, 4, 619 CrossRef
;
(g) Y. Nishihara, E. Inoue, D. Ogawa, Y. Okada, S. Noyori and K. Takagi, Tetrahedron Lett., 2009, 50, 4643 CrossRef CAS
;
(h) A. Caporale, S. Tartaggia, A. Castellin and O. DeLucchi, Beilstein J. Org. Chem., 2014, 10, 384 CrossRef PubMed
.
-
(a) H.-F. Chow, C.-W. Wan, K.-H. Low and Y.-Y. Yeung, J. Org. Chem., 2001, 66, 1910 CrossRef CAS PubMed
;
(b) N. E. Leadbeater, M. Marco and B. J. Tominack, Org. Lett., 2003, 5, 3919 CrossRef CAS PubMed
.
-
(a) C. C. Tzschucke, C. Markert, H. Glatz and W. Bannwarth, Angew. Chem., Int. Ed., 2002, 41, 4500 CrossRef CAS
;
(b) E. Genin, R. Amengual, V. Michelet, M. Savignac, A. Jutand, L. Neuville and J.-P. Genet, Adv. Synth. Catal., 2004, 346, 1733 CrossRef CAS
.
-
(a) P. Appukkuttan, W. Dehaen and E. Van der Eycken, Eur. J. Org. Chem., 2003, 4713 CrossRef CAS
;
(b) G. W. Kabalka, L. Wang, V. Namboodiri and R. M. Pagni, Tetrahedron Lett., 2000, 41, 5151 CrossRef CAS
;
(c) U. S. Sørensen and E. Pombo-Villar, Tetrahedron, 2005, 61, 2697 CrossRef
.
-
(a) S. Brase, S. Dahmen, F. Lauterwasser, N. E. Leadbeater and E. L. Sharp, Bioorg. Med. Chem. Lett., 2002, 12, 1849 CrossRef CAS PubMed
;
(b) J. Gil-Moltó, S. Karlström and C. Nájera, Tetrahedron, 2005, 61, 12168 CrossRef
;
(c) N. K. Garg, C. C. Woodroofe, C. J. Lacenere, S. R. Quake and B. M. Stolz, Chem. Commun., 2005, 4551 RSC
;
(d) Z.-W. Ye and W.-B. Yi, J. Fluorine Chem., 2008, 129, 1124 CrossRef CAS
;
(e) B. Basu, S. Das, P. Das, B. Mandal, D. Banerjee and F. Almqvist, Synthesis, 2009, 7, 1137 CrossRef
.
-
(a) B. C. Hamann and J. F. Hartwig, J. Am. Chem. Soc., 1998, 120, 3694 CrossRef CAS
;
(b) M.-N. Birkholz (née, Gensow), Z. Freixa and P. W. N. M. van Leeuwen, Chem. Soc. Rev., 2009, 38, 1099 RSC
.
- P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek and P. Dierkes, Chem. Rev., 2000, 100, 2741 CrossRef CAS PubMed
.
- J. L. Nallasivam and R. A. Fernandes, Eur. J. Org. Chem., 2015, 2012 CrossRef CAS
.
-
(a) P. H. Patil, J. L. Nallasivam and R. A. Fernandes, Asian J. Org. Chem., 2015, 4, 552 CrossRef CAS
;
(b) J. L. Nallasivam and R. A. Fernandes, Eur. J. Org. Chem., 2015, 3558 CrossRef CAS
.
- A. Komáromi and Z. Novák, Chem. Commun., 2008, 4968 RSC
.
- M. K. Hussain, M. I. Ansari, R. Kant and K. Hajela, Org. Lett., 2014, 16, 560 CrossRef CAS PubMed
.
- C. W. D. Gallop, M.-T. Chen and O. Navarro, Org. Lett., 2014, 16, 3724 CrossRef CAS PubMed
.
- C.-H. Lin, Y.-J. Wang and C.-F. Lee, Eur. J. Org. Chem., 2010, 4368 CAS
.
- S. Mori, T. Yanase, S. Aoyagi, Y. Monguchi, T. Maegawa and H. Sajiki, Chem.–Eur. J., 2008, 14, 6994 CrossRef CAS PubMed
.
- N. Lu, Y.-C. Chen, W.-S. Chen, T.-L. Chen and S.-J. Wu, J. Organomet. Chem., 2009, 694, 278 CrossRef CAS
.
- Z. Novák, A. Szabó, J. Répási and A. Kotschy, J. Org. Chem., 2003, 68, 3327 CrossRef PubMed
.
Footnote |
† Electronic supplementary information (ESI) available: Copies of 1H and 13C NMR spectra for all the compounds. See DOI: 10.1039/c5ra07754k |
|
This journal is © The Royal Society of Chemistry 2015 |
Click here to see how this site uses Cookies. View our privacy policy here.