Regioselective synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines

Kai-Min Wang a, Yu-Lu Maa, Xin-Rong Lina, Sheng-Jiao Yan*a and Jun Lin*ab
aKey Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Advanced Analysis and Measurement Center, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China. E-mail: yansj@ynu.edu.cn; linjun@ynu.edu.cn; Fax: +86 871 65033215
bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China

Received 10th March 2015 , Accepted 13th April 2015

First published on 13th April 2015


Abstract

A concise and efficient synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines was developed by regioselective aza-ene additions and regioselective cyclic–condensation reactions of heterocyclic ketene aminals with ethyl 3-benzoylacrylate or methyl acetylacrylate derivatives under catalyst-free conditions. This method has some advantages including high regioselectivity, good yields and simple work-up procedures.


Introduction

Pyrrolo[1,2-a]imidazole derivatives are a class of important organic compounds that serve as key structural building blocks in numerous natural products and synthetic biological medicinal agents,1 owing to their wide spectrum of biological activities. Pyrrolo[1,2-a]imidazole derivatives have been used as antimycobacterial agents (Fig. 1, Thiolutin),2 human NK1 antagonists (Fig. 1),3 antitumor agents (Fig. 1, UCS1025A),4 and so on.5 As a result, more and more pyrrolo[1,2-a]imidazole derivatives have been synthesised using various methods, including furan-2,5-dione or 1H-pyrrole-2,5-diones or ethyl 2-bromoacetate addition and cyclisation with enamine derivatives,6a–d cyclisations of unsaturated amides,6e direct reaction of imines with cyclic anhydrides,7 Au-catalysed cyclisations,8 carbenoid C–H insertions cyclisations9 and ring expansions.10
image file: c5ra04244e-f1.tif
Fig. 1 Pyrrolo[1,2-a]imidazoles, imidazo[1,2-a]-pyridines and the target compounds.

Similarly, imidazo[1,2-a]-pyridines derivatives represent a class of important organic molecules that make up the core structures in drugs, including analgesics,11 cardiotonic agents,12 microtubule inhibitors,13 hypnotic drugs,14 and so on.15 Therefore, various synthetic methods have been developed to prepare imidazo[1,2-a]-pyridine, including a one-pot multicomponent reaction based on the catalyst,16 Scholtz or Tschitschibabin reactions,17 metal-catalysed intramolecular cyclisations,18 and 1,3-dipolar or 1,5-dipolar cyclisations.19 However, many of these methods involve the use of expensive or toxic transition metals as catalysts, extended reaction times, and high temperatures, in addition to requiring tedious work-up procedures.

Heterocyclic ketene aminals (HKAs),20 as important building blocks, have been used for the synthesis of a variety of biologically active heterocyclic compounds.21

HKAs belong to the enamine derivatives, which have served as substrates only when reacting with furan-2,5-dione, 1H-pyrrole-2,5-diones or ethyl 2-bromoacetate additions and cyclisations with enamine derivatives,6 and syntheses of pyrrolo[1,2-a]imidazoles. However, the cheap and easily available raw material ethyl 3-benzoylacrylate or methyl acetylacrylate derivatives were not involved these protocols. Moreover, in continuation of our research interests regarding the development of the synthesis and applications of HKAs for new drug discovery. Herein, we report a regioselective synthesis of pyrrolo[1,2-a]imidazole derivatives and imidazo[1,2-a]-pyridine derivatives from HKAs (Fig. 2).6


image file: c5ra04244e-f2.tif
Fig. 2 Regioselective synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines.

Results and discussion

Initially, HKAs 1a and ethyl 3-benzoylacrylate 4a were chosen as the model substrates for optimising the reaction conditions (solvent, catalyst and temperature). The results are listed in Table 1. First, the model reaction was performed separately in various solvents, including toluene, CH2Cl2, THF, 1,4-dioxane, CH3CN, EtOH, DMF, and H2O (Table 1, entries 1–8), and it was found that CH3CN was the best solvent, and the yield of 5a could reach 98% (Table 1, entry 5). Next, we screened the catalyst (acids and bases) of the reaction and found that neither acids (Table 1, entries 9, 10) nor bases (Table 1, entries 11, 12) used as the catalyst obviously promoted the reactions. Finally, the model reaction was performed at different temperatures, such as ambient temperature, 45 °C and 60 °C. The results suggest that the 5a yields decreased at all of these temperatures (Table 1, entries 13–15). Therefore, we propose that the optimum reaction conditions are 1a (1.0 mmol) and 4a (1.1 mmol), refluxed in the solution of CH3CN without any catalyst.
Table 1 Optimisation of reaction conditionsa

image file: c5ra04244e-u1.tif

Entry Solvent Catalystb t (°C) Time/min Yieldc (%)
a Reagents and conditions: HKA 1a (1.0 mmol), 4a (1.1 mmol), solvent (10.0 mL).b Catalyst 10%.c Isolated yield based on HKA 1a.d r.t. = room temperature.
1 Toluene Reflux 30 75
2 CH2Cl2 Reflux 120 90
3 THF Reflux 120 87
4 1,4-Dioxane Reflux 60 82
5 CH3CN Reflux 50 98
6 EtOH Reflux 60 53
7 DMF Reflux 30 81
8 H2O Reflux 30 88
9 CH3CN HOAc Reflux 50 97
10 CH3CN p-TSA Reflux 50 95
11 CH3CN Et3N Reflux 50 89
12 CH3CN K2CO3 Reflux 50 90
13d CH3CN r.t. 280 93
14 CH3CN 45 300 95
15 CH3CN 60 120 95


Based on the optimisation conditions, the scope and limitations of this protocol have been examined, and a number of six-membered ring HKAs 1b–g were used as substrates to react with ethyl 3-benzoylacrylate 4a. As can be seen, the substituent on the aromatic HKAs had some influence on the yields and reactivities. The substituted aromatic HKAs with electron-donating groups, such as methoxyl and methyl groups (Table 2, entries 1, 2), reacted faster and gave higher yields than did those with electron-withdrawing groups, such as chloro and fluoro groups (Table 2, entries 4–7). After that, seven-membered HKAs 2a–d were also employed as substrates, reacting with 4a (Table 2, entries 11–14). The reactions proceeded smoothly under the same conditions and we got the final products 6a–d with good yields (85–95%). The size of heterocyclic ketene aminal heterocycles also has a slight influence on the reactivity and product yield of the reaction. Generally, six-membered HKAs could react faster and give higher yields than seven-membered ones.

Table 2 Preparation of pyrrolo[1,2-a]imidazole derivativesa

image file: c5ra04244e-u2.tif

Entry n EWG 4 5/6 Time/min Yieldb(%)
a Reagents and conditions: HKA (1.0 mmol), 4 (1.1 mmol) and the solvent CH3CN (10.0 mL) at reflux.b Isolated yield based on HKA.
1 2 p-MeOC6H4CO (1a) 4a 5a 30 98
2 2 p-MeC6H4CO (1b) 4a 5b 30 98
3 2 C6H5CO (1c) 4a 5c 50 96
4 2 p-ClC6H4CO (1d) 4a 5d 70 93
5 2 p-FC6H4CO (1e) 4a 5e 90 91
6 2 NO2 (1f) 4a 5f 120 86
7 2 o-ClC6H4CO (1g) 4a 5g 120 90
8 2 p-MeC6H4CO (1b) 4b 5h 30 97
9 2 C6H5CO (1c) 4b 5i 50 96
10 2 p-FC6H4CO (1e) 4b 5j 90 92
11 3 p-MeC6H4CO (2a) 4a 6a 40 95
12 3 C6H5CO (2b) 4a 6b 70 90
13 3 p-ClC6H4CO (2c) 4a 6c 90 87
14 3 p-FC6H4CO (2d) 4a 6d 120 85
15 3 p-MeC6H4CO (2a) 4b 6e 40 94
16 3 C6H5CO (2b) 4b 6f 70 91
17 3 p-ClC6H4CO (2c) 4b 6g 100 86


In an endeavour to expand the scope of substrates 4 (Table 2, entries 8–10 and 15–17), methyl acetylacrylate 4b was reacted with six-membered (Table 2, entries 8–10) and seven-membered (Table 2, entries 15–17) HKAs with both electron-withdrawing and electron-donating groups giving pyrrolo[1,2-a]imidazoles 5h–j. Compared to 4a, the yields of the 4b were almost the same and the reaction time was identical to the corresponding reaction. The electron-donating, as well as electron-withdrawing, groups on aromatic rings of HKAs were also tolerated, although the former gave slightly higher yields.

In order to further investigate the scope of HKAs, five-membered HKAs 3a–h were also employed to react with ethyl 3-benzoylacrylate 4a. Surprisingly, the desired pyrrolidinone derivatives were not obtained, while we found the imidazo[1,2-a]-pyridine derivatives 7 in good yields (Table 3, entries 1–8). As can been seen, the substituent on the aromatic HKAs 3a–h had little influence on the yield. Obtaining different products (5 or 6 vs. 7) of different membered ring HKAs (n = 2 or 3 vs. n = 1) on account of the six- or seven-membered rings of HKAs 1 or 2 showed that it was easy to fuse a five-membered ring, while the five-membered ring of HKAs 3 could not fuse a five-membered ring, owing to the tension of the ring, which was too high to form bicyclic fused products. Then, methyl acetylacrylate 4b was reacted with five-membered HKAs (Scheme 1, 3d and 3f).

Table 3 Optimisation of reaction conditionsa

image file: c5ra04244e-u3.tif

Entry EWG (3) 7 Time/min Yieldb (%)
a Reagents and conditions: HKA 3 (1.0 mmol), 4a (1.1 mmol), solvent (10.0 mL).b Isolated yield based on HKA 3.
1 p-MeOC6H4CO (3a) 7a 60 93
2 p-EtC6H4CO (3b) 7b 60 90
3 p-MeC6H4CO (3c) 7c 60 91
4 C6H5CO (3d) 7d 60 90
5 p-BrC6H4CO (3e) 7e 120 85
6 p-ClC6H4CO (3f) 7f 120 85
7 p-FC6H4CO (3g) 7g 120 82
8 NO2 (3h) 7h 120 81



image file: c5ra04244e-s1.tif
Scheme 1 Synthesis of imidazo[1,2-a]-pyridine derivatives 8.

Two potential directions of this reaction are outlined in Scheme 2. During our investigation, we did not trace A, and only 5–8 were obtained exclusively. These results indicated that this reaction might provide a highly regioselective method for the pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines.


image file: c5ra04244e-s2.tif
Scheme 2 Proposed mechanism for regioselective synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines.

The 1H, 13C NMR spectra, IR spectra and high-resolution mass spectra data have confirmed the structure of the target compound 5–8. In order to specifically test the structure, 5e and 7e were characterised by X-ray crystallography as a representative compound, as shown in Fig. 3 and 4.


image file: c5ra04244e-f3.tif
Fig. 3 ORTEP diagram of 5e; ellipsoids are drawn at the 30% probability level.

image file: c5ra04244e-f4.tif
Fig. 4 ORTEP diagram of 7e; ellipsoids are drawn at the 30% probability level.

A proposed mechanism for the synthesis of pyrrolo[1,2-a]imidazoles 5–6 and imidazo[1,2-a]-pyridines 7–8 is shown in Scheme 2. First, the α-C of HKAs 1–3 adds to the double bond of compound 4 and affords intermediates 9 via an aza-ene addition reaction.22 Second, the intermediates 9 is followed by imine–enamine tautomerisation to give the key compound B. Next, there are two directions for the five-membered ring of HKAs (n = 1). The key compound A underwent the intramolecular N-cyclisation of the ketonic carbonyl, leading to 7, which loses an H2O to form 10. Then, compound 10 forms compound 8 via an aromatic reaction. Likewise, for the six- and seven-membered ring of HKAs (n = 2, 3), the key compound B underwent the intramolecular N-cyclisation of the carbonyl group of ester to give the final products, 5 or 6.

Conclusions

In summary, we have successfully developed a novel highly regioselective method for the preparation of pyrrolo[1,2-a]imidazoles or imidazo[1,2-a]-pyridines under catalyst-free conditions. The ring sizes of the HKA have a significant influence on the products. For five-membered HKAs, they can exclusively react with 4 to provide imidazo[1,2-a]-pyridines, and the yields and the reaction time of these reactions are related to the substituents of the HKAs. For the six- or seven-membered HKAs, they can react with 4 to give the corresponding pyrrolo[1,2-a]imidazoles. In addition, six-membered HKAs and HKAs bearing electron-donating groups could provide higher yields. Features of this strategy include some important aspects, like highly regioselective, convenient operation, short reaction times, the absence of catalysts, satisfactory yields and simple purification by washing the crude products with minimum amounts of common solvents.

Experimental section

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX400 (1H: 400 MHz, 13C: 100 MHz). The chemical shifts (δ) are expressed in ppm and J values are given in Hz. Deuterated CDCl3 was used as a solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument. All chemicals and solvents were used as received without further purification unless otherwise stated. Compounds 1, 2, and 3 were prepared according to the literature.23 Materials 4 were purchased from Adamas-beta Corporation Limited.

General procedure

HKA derivatives 1, 2 or 3 (1.0 mmol), Michael reaction acceptors 4 (1.1 mmol) and CH3CN (10 mL) were placed in a 25 mL round-bottom flask and the mixture was stirred at reflux for 30–120 min. Completion of the reaction was monitored by TLC. The reaction mixture was then filtered to obtain the pure crude product, which was further washed with hexane/EtOH (10[thin space (1/6-em)]:[thin space (1/6-em)]1) to give pure products 5–8 with a yield of 81–98%. The products were further identified using FTIR, NMR and HRMS.
8-(4-Methoxybenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5a). Red solid; Mp 90.5–92.9 °C; IR (KBr): 3440, 2930, 1634, 1518, 1443, 1253, 1165, 1025 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.99–2.06 (m, 2H, CH2), 3.00–3.21 (m, 2H, COCH2), 3.39–3.47 (m, 2H, CH2N), 3.55–3.70 (m, 2H, NCH2), 3.73 (s, 3H, OCH3), 3.90–3.96 (m, 1H, CH), 6.70–6.87 (m, 2H, ArH), 7.14–7.29 (m, 2H, ArH), 7.31–7.41 (m, 3H, ArH), 7.41–7.51 (m, 2H, ArH), 9.89 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.1, 37.3, 38.2, 38.6, 41.1, 55.3, 88.5, 113.6, 127.9, 128.3, 128.5, 133.0, 134.1, 136.5, 158.9, 160.7, 177.4, 184.0, 197.4; HRMS (TOF ES+): m/z calcd for C23H22N2NaO4 [(M + Na)+], 413.1472; found, 413.1469.
8-(4-Methylbenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5b). Red solid; Mp 87.9–88.5 °C; IR (KBr): 3394, 2923, 1636, 1522, 1443, 1262, 1164, 1093 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.03–2.09 (m, 2H, CH2), 2.29 (s, 3H, ArCH3), 2.97–3.16 (m, 2H, COCH2), 3.40–3.50 (m, 2H, CH2N), 3.61–3.74 (m, 2H, NCH2), 3.89–3.91 (m, 1H, CH), 7.05–7.07 (m, 2H, ArH), 7.19–7.29 (m, 4H, ArH), 7.39–7.43 (m, 3H, ArH), 9.89 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.1, 21.4, 37.3, 38.2, 38.6, 41.0, 88.8, 126.7, 127.9, 128.3, 129.0, 133.0, 136.5, 138.8, 139.6, 159.0, 177.5, 184.8, 197.4; HRMS (TOF ES+): m/z calcd for C23H22N2NaO3 [(M + Na)+], 397.1523; found, 397.1525.
8-Benzoyl-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5c). Red solid; Mp 126.4–126.9 °C; IR (KBr): 3438, 2894, 1729, 1528, 1443, 1265, 1158, 745 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.07–2.14 (m, 2H, CH2), 3.03–3.13 (m, 2H, COCH2), 3.47–3.53 (m, 2H, CH2N), 3.70–3.78 (m, 2H, NCH2), 3.92–3.94 (m, 1H, CH), 7.27–7.48 (m, 10H, ArH), 9.95 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.1, 37.3, 38.1, 38.6, 40.9, 88.8, 126.5, 127.9, 128.3, 128.4, 129.5, 133.1, 136.4, 141.7, 159.1, 177.4, 184.7, 197.3; HRMS (TOF ES+): m/z calcd for C22H21N2O3 [(M + H)+], 361.1547; found, 361.1545.
8-(4-Chlorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5d). Red solid; Mp 141.9–143.0 °C; IR (KBr): 3441, 2911, 1729, 1631, 1527, 1440, 1265, 760 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.98–2.07 (m, 2H, CH2), 3.00–3.13 (m, 2H, COCH2), 3.38–3.47 (m, 2H, CH2N), 3.60–3.72 (m, 2H, NCH2), 3.84–3.86 (m, 1H, CH), 7.20–7.28 (m, 4H, ArH), 7.26–7.30 (m, 2H, ArH), 7.38–7.45 (m, 3H, ArH), 9.90 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.0, 37.3, 38.2, 38.7, 40.7, 88.8, 127.8, 128.1, 128.4, 128.6, 133.2, 135.4, 136.3, 140.0, 159.4, 177.2, 183.0, 197.1; HRMS (TOF ES+): m/z calcd for C22H19ClN2NaO3 [(M + Na)+], 417.0976; found, 417.0976.
8-(4-Fluorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5e). Red solid; Mp 117.6–118.7 °C; IR (KBr): 3221, 3059, 2878, 1728, 1636, 1526, 1270, 1092 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.00–2.10 (m, 2H, CH2), 3.00–3.14 (m, 2H, COCH2), 3.41–3.51 (m, 2H, CH2N), 3.62–3.76 (m, 2H, NCH2), 3.85–3.88 (m, 1H, CH), 6.92–6.97 (m, 2H, ArH), 7.19–7.27 (m, 2H, ArH), 7.34–7.46 (m, 5H, ArH), 9.88 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.1, 37.3, 38.2, 38.7, 40.8, 88.7, 115.2 (J = 21.3 Hz), 115.5 (J = 21.3 Hz), 127.8, 128.4, 128.7 (J = 8.2 Hz), 128.8 (J = 8.2 Hz), 133.2, 136.3, 137.8, 159.3, 162.1 (J = 247.8 Hz), 164.6 (J = 247.8 Hz), 177.3, 183.3, 197.1; HRMS (TOF ES+): m/z calcd for C22H19FN2NaO3 [(M + Na)+], 401.1272; found, 401.1268.
8-Nitro-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo-[1,2-a]pyrimidin-6(2H)-one (5f). Red solid; Mp 147.4–148.1 °C; IR (KBr): 3464, 3265, 2971, 1748, 1668, 1515, 1310, 1155 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.00–2.13 (m, 2H, CH2), 3.48–3.52 (m, 2H, COCH2), 3.52–3.67 (m, 2H, CH2N), 3.72–3.78 (m, 2H, CH2N), 4.30–4.35 (m, 1H, CH), 7.34–7.38 (m, 2H, ArH), 7.45–7.48 (m, 1H, ArH), 7.80–7.83 (m, 2H, ArH), 9.13 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 19.4, 36.4, 37.3, 39.3, 39.9, 105.0, 128.1, 128.7, 133.6, 135.9, 154.2, 137.4, 197.5; HRMS (TOF ES+): m/z calcd for C15H15N3NaO4 [(M + Na)+], 324.0955; found, 324.0954.
8-(2-Chlorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5g). White solid; Mp 266.9–268.2 °C; IR (KBr): 3434, 3246, 2888, 1731, 1630, 1526, 1365, 1094 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.08–2.15 (m, 2H, CH2), 2.76–2.81 (m, 1H, COCH2), 3.02–3.08 (m, 1H, COCH2), 3.46–3.51 (m, 2H, CH2N), 3.55–3.58 (m, 1H, CH), 3.64–3.76 (m, 2H, NCH2), 6.97–7.05 (m, 2H, ArH), 7.15–7.30 (m, 4H, ArH), 7.42–7.45 (m, 1H, ArH), 7.49–7.52 (m, 2H, ArH), 9.63 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.0, 37.3, 38.1, 38.7, 39.8, 90.0, 126.9, 127.8, 128.1, 128.4, 129.6, 129.7, 130.1, 133.2, 136.1, 140.9, 158.9, 177.3, 182.7, 196.6; HRMS (TOF ES+): m/z calcd for C22H19ClN2NaO3 [(M + Na)+], 417.0976; found, 417.0976.
8-(4-Methylbenzoyl)-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5h). White solid; Mp 228.7–229.5 °C; IR (KBr): 3435, 2922, 1719, 1626, 1532, 1440, 1272, 1162 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.75 (s, 3H, COCH3), 1.98–2.02 (m, 2H, CH2), 2.30 (s, 3H, ArCH3), 2.37–2.43 (m, 1H, COCH2), 2.56–2.62 (m, 1H, COCH2), 3.39–3.43 (m, 2H, CH2N), 3.58–3.63 (m, 2H, NCH2), 3.72–3.75 (m, 1H, CH), 7.10–7.12 (m, 2H, ArH), 7.31–7.33 (m, 2H, ArH), 9.88 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.1, 21.4, 30.1, 37.3, 38.6, 40.7, 42.9, 88.5, 126.6, 129.0, 138.8, 139.7, 158.8, 177.2, 184.6, 205.6; HRMS (TOF ES+): m/z calcd for C18H20N2NaO3 [(M + Na)+], 335.1366; found, 335.1365.
8-Benzoyl-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5i). White solid; Mp 195.0–196.7 °C; IR (KBr): 3205, 3050, 2967, 1720, 1628, 1536, 1363, 1079 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.72 (s, 3H, COCH3), 1.98–2.01 (m, 2H, CH2), 2.30–2.36 (m, 1H, COCH2), 2.54–2.59 (m, 1H, COCH2), 3.38–3.43 (m, 2H, CH2N), 3.58–3.63 (m, 2H, NCH2), 3.70–3.72 (m, 1H, CH), 7.29–7.32 (m, 3H, ArH), 7.39–7.42 (m, 2H, ArH), 9.87 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.0, 30.0, 37.2, 38.6, 40.6, 42.8, 88.7, 126.4, 128.4, 129.6, 141.6, 158.9, 177.2, 184.5, 205.6; HRMS (TOF ES+): m/z calcd for C17H18N2NaO3 [(M + Na)+], 321.1210; found, 321.1210.
8-(4-Fluorobenzoyl)-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5j). White solid; Mp 237.7–238.8 °C; IR (KBr): 3231, 3064, 2876, 1724, 1629, 1536, 1263, 1083 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.77 (s, 3H, COCH3), 2.01–2.07 (m, 2H, CH2), 2.36–2.43 (m, 1H, COCH2), 2.59–2.64 (m, 1H, COCH2), 3.42–3.47 (m, 2H, CH2N), 3.61–3.66 (m, 2H, NCH2), 3.70–3.73 (m, 1H, CH), 6.98–7.03 (m, 2H, ArH), 7.42–7.45 (m, 2H, ArH), 9.88 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 20.0, 30.0, 37.3, 38.6, 40.6, 42.9, 88.5, 115.3 (J = 21.4 Hz), 115.5 (J = 21.4 Hz), 128.7 (J = 8.4 Hz), 128.8 (J = 8.4 Hz), 137.7, 159.2, 162.2 (J = 248.0 Hz), 164.6 (J = 248.0 Hz), 177.0, 183.1, 205.4; HRMS (TOF ES+): m/z calcd for C17H17FN2NaO3 [(M + Na)+], 339.1115; found, 339.1115.
9-(4-Methylbenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6a). Red solid; Mp 164.0–164.9 °C; IR (KBr): 3436, 2941, 1732, 1680, 1532, 1443, 1237, 1141 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.99–2.09 (m, 4H, CH2CH2), 2.29 (s, 3H, ArCH3), 2.96–3.09 (m, 2H, COCH2C), 3.46–3.54 (m, 2H, CH2N), 3.77–3.91 (m, 1H, NCH2), 3.93–3.95 (m, 1H, CH), 3.96–4.00 (m, 1H, NCH2), 7.05–7.07 (m, 2H, ArH), 7.20–7.25 (m, 4H, ArH), 7.38–7.44 (m, 2H, ArH), 10.71 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 21.4, 24.9, 27.4, 38.6, 41.1, 41.2, 42.7, 90.6, 126.6, 127.9, 128.3, 129.0, 133.0, 136.5, 138.9, 139.6, 165.2, 178.8, 185.0, 197.2; HRMS (TOF ES+): m/z calcd for C24H24N2NaO3 [(M + Na)+], 411.1679; found, 411.1679.
9-Benzoyl-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6b). Red solid; Mp 159.4–160.9 °C; IR (KBr): 3454, 3054, 2903, 1735, 1617, 1447, 1275, 1142, cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.92–2.08 (m, 4H, CH2CH2), 2.95–2.97 (m, 2H, COCH2), 3.44–3.51 (m, 2H, CH2N), 3.78–3.85 (m, 1H, NCH2), 3.83–3.85 (m, 1H, CH), 3.90–3.96 (m, 1H, NCH2), 7.18–7.30 (m, 7H, ArH), 7.30–7.40 (m, 3H, ArH), 10.71 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 24.8, 27.3, 38.5, 41.0, 41.2, 42.6, 90.5, 126.5, 127.9, 128.3, 128.4, 129.4, 133.1, 136.3, 141.8, 165.3, 178.7, 184.9, 197.1; HRMS (TOF ES+): m/z calcd for C23H22N2NaO3 [(M + Na)+], 397.1523; found, 397.1519.
9-(4-Chlorobenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6c). Red solid; Mp 175.9–177.4 °C; IR (KBr): 3454, 3061, 2929, 1736, 1616, 1441, 1275, 1142 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.00–2.19 (m, 4H, CH2CH2), 3.10–3.12 (m, 2H, COCH2), 3.56–3.64 (m, 2H, CH2N), 3.87–3.93 (m, 1H, NCH2), 3.91–3.93 (m, 1H, CH), 4.01–4.07 (m, 1H, NCH2), 7.28–7.36 (m, 6H, ArH), 7.46–7.55 (m, 3H, ArH), 10.83 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 24.8, 27.2, 38.7, 40.9, 41.2, 42.7, 90.5, 127.9, 128.1, 128.4, 128.6, 133.2, 135.4, 136.2, 140.1, 165.6, 178.5, 183.2, 196.9; HRMS (TOF ES+): m/z calcd for C23H21ClN2O3 [(M + Na)+], 431.1133; found, 431.1140.
9-(4-Fluorobenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6d). Red solid; Mp 178.3–179.0 °C; IR (KBr): 3449, 3065, 2917, 1734, 1685, 1540, 1369, 1144 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.02–2.11 (m, 4H, CH2CH2), 3.01–3.02 (m, 2H, COCH2), 3.47–3.56 (m, 2H, CH2N), 3.78–3.82 (m, 1H, NCH2), 3.81–3.83 (m, 1H, CH), 3.84–3.99 (m, 1H, NCH2), 6.92–6.96 (m, 2H, ArH), 7.22–7.46 (m, 7H, ArH), 10.73 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 24.8, 27.3, 38.6, 40.9, 41.2, 42.6, 90.4, 115.2 (J = 21.3 Hz), 115.5 (J = 21.3 Hz), 127.8, 128.4, 128.7 (J = 8.3 Hz), 128.8 (J = 8.3 Hz), 133.2, 136.3, 137.9 (J = 2.6 Hz), 137.9 (J = 2.6 Hz), 162.0 (J = 247.7 Hz), 164.5 (J = 247.7 Hz), 165.5, 178.6, 183.4, 196.9; HRMS (TOF ES+): m/z calcd for C23H21FN2NaO3 [(M + Na)+], 415.1428; found, 415.1429.
9-(4-Methylbenzoyl)-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6e). Yellow solid; Mp 202.0–203.8 °C; IR (KBr): 3445, 2940, 1722, 1618, 1541, 1437, 1265, 1151 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.75 (s, 3H, COCH3), 1.87–2.06 (m, 4H, CH2CH2), 2.30 (s, 3H, ArCH3), 2.32–2.37 (m, 1H, COCH2), 2.56–2.61 (m, 1H, COCH2), 3.46–3.52 (m, 2H, CH2N), 3.71–3.73 (m, 1H, CH), 3.71–3.79 (m, 1H, NCH2), 3.87–3.93 (m, 1H, NCH2), 7.10–7.13 (m, 2H, ArH), 7.29–7.31 (m, 2H, ArH), 10.70 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 21.4, 24.8, 27.3, 30.0, 40.9, 41.1, 42.6, 43.2, 90.4, 126.5, 129.0, 138.9, 139.7, 165.1, 178.5, 184.9, 205.5; HRMS (TOF ES+): m/z calcd for C19H22N2NaO3[(M + Na)+], 349.1523; found, 349.1527.
9-Benzoyl-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6f). Yellow solid; Mp 169.9–170.6 °C; IR (KBr): 3445, 2933, 1723, 1619, 1543, 1444, 1262, 1148 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.73 (s, 3H, COCH3), 1.89–2.04 (m, 4H, CH2CH2), 2.24–2.30 (m, 1H, COCH2), 2.55–2.60 (m, 1H, COCH2), 3.49–3.53 (m, 2H, CH2N), 3.68–3.69 (m, 1H, CH), 3.70–3.80 (m, 1H, NCH2), 3.87–3.93 (m, 1H, NCH2), 7.31–7.33 (m, 3H, ArH), 7.37–7.40 (m, 2H, ArH), 10.71 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 24.8, 27.3, 29.9, 40.8, 41.1, 42.6, 43.2, 90.4, 126.4, 128.5, 129.5, 141.7, 165.2, 178.5, 184.9, 205.4; HRMS (TOF ES+): m/z calcd for C18H20N2NaO3 [(M + Na)+], 335.1366; found, 335.1369.
9-(4-Chlorobenzoyl)-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6g). Yellow solid; Mp 242.3–243.5 °C; IR (KBr): 3452, 2943, 1727, 1619, 1543, 1267, 1152, 1089 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.78 (s, 3H, COCH3), 1.88–2.07 (m, 4H, CH2CH2), 2.30–2.39 (m, 1H, COCH2), 2.60–2.65 (m, 1H, COCH2), 3.50–3.55 (m, 2H, CH2N), 3.67–3.69 (m, 1H, CH), 3.75–3.81 (m, 1H, NCH2), 3.88–3.94 (m, 1H, NCH2), 7.29–7.32 (m, 2H, ArH), 7.31–7.37 (m, 2H, ArH), 10.76 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 24.7, 27.2, 30.0, 40.6, 41.1, 42.6, 43.3, 90.4, 128.0, 128.7, 135.5, 140.0, 165.5, 178.3, 183.0, 205.3; HRMS (TOF ES+): m/z calcd for C18H19ClN2NaO3 [(M + Na)+], 369.0976; found, 369.0979.
Ethyl-5-hydroxy-8-(4-methoxybenzoyl)-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7a). Yellow solid; Mp 80.5–81.9 °C; IR (KBr): 3427, 2971, 1729, 1599, 1384, 1247, 1168, 1027 cm−1; 1H NMR (400 MHz, CDCl3): δ = 0.93–0.96 (t, 3H, CCH3), 2.25–2.27 (m, 2H, CH2), 3.08–3.09 (m, 1H, CHCO), 3.42–3.47 (m, 2H, NCH2), 3.50–3.53 (m, 1H, CH2N), 3.73 (s, 3H, OCH3), 3.76–3.80 (m, 1H, CH2N), 3.78–3.85 (q, 2H, OCH2), 6.19 (s, 1H, OH), 6.78–6.80 (m, 2H, ArH), 7.19–7.22 (m, 2H, ArH), 7.23–7.25 (m, 1H, ArH), 7.28–7.33 (m, 2H, ArH), 7.45–7.47 (m, 2H, ArH), 9.68 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 39.0, 40.5, 41.8, 42.9, 55.3, 61.5, 82.3, 82.7, 113.4, 126.0, 128.1, 128.1, 128.6, 135.3, 142.6, 159.7, 161.2, 178.4, 189.9; HRMS (TOF ES+): m/z calcd for C24H27N2O5 [(M + H)+], 423.1914; found, 429.1914.
Ethyl-8-(4-ethylbenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7b). Yellow solid; Mp 91.0–91.9 °C; IR (KBr): 3291, 2968, 2353, 1728, 1599, 1512, 1387, 1169 cm−1; 1H NMR (400 MHz, CDCl3): δ = 0.83–0.95 (t, 3H, CCH3), 1.11–1.17 (t, 3H, CCH3), 2.19–2.30 (m, 2H, CH2), 2.54–2.60 (q, 2H, ArCH2), 3.08–3.10 (t, 1H, CHCO), 3.42–3.53 (m, 2H, NCH2), 3.51–3.65 (m, 1H, CH2N), 3.74–3.78 (q, 2H, OCH2), 3.80–3.87 (m, 1H, CH2N), 6.16 (s, 1H, OH), 7.08–7.18 (m, 4H, ArH), 7.24–7.36 (m, 3H, ArH), 7.31–7.47 (m, 2H, ArH), 9.72 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 15.6, 28.7, 39.0, 40.4, 41.8, 42.9, 61.4, 82.4, 82.7, 126.0, 126.4, 127.5, 128.1, 128.6, 140.1, 142.6, 144.3, 161.2, 178.5, 190.5; HRMS (TOF ES+): m/z calcd for C25H29N2O4 [(M + H)+], 421.2122; found, 421.2123.
Ethyl-5-hydroxy-8-(4-methylbenzoyl)-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7c). Orange solid; Mp 95.0–96.3 °C; IR (KBr): 3287, 2975, 2352, 1727, 1588, 1512, 1386, 1170 cm−1; 1H NMR (400 MHz, CDCl3): δ = 0.92–0.96 (t, 3H, CCH3), 2.24–2.25 (d, 2H, CH2), 2.27 (s, 3H, CCH3), 3.07–3.12 (m, 1H, CHCO), 3.43–3.51 (m, 2H, NCH2), 3.54–3.61 (m, 1H, CH2N), 3.73–3.75 (q, 2H, OCH2), 3.79–3.87 (m, 1H, CH2N), 6.16 (s, 1H, OH), 7.06–7.08 (m, 2H, ArH), 7.12–7.14 (m, 2H, ArH), 7.24–7.26 (m, 1H, ArH), 7.29–7.33 (m, 2H, ArH), 7.45–7.47 (m, 2H, ArH), 9.71 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 21.3, 39.0, 40.4, 41.8, 42.9, 61.5, 82.3, 82.7, 126.0, 126.4, 128.1, 128.6, 128.7, 138.0, 139.9, 142.6, 161.2, 178.6, 190.5; HRMS (TOF ES+): m/z calcd for C24H26N2NaO4 [(M + Na)+], 429.1785; found, 429.1785.
Ethyl-8-benzoyl-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridine-7-carboxylate (7d). Red solid; Mp 84.9–85.7 °C; IR (KBr): 3288, 2979, 1729, 1600, 1513, 1387, 1168, 1024 cm−1; 1H NMR (400 MHz, CDCl3): δ = 0.91–0.94 (t, 3H, CCH3), 2.23–2.26 (d, 2H, CH2), 3.07–3.12 (m, 1H, CHCO), 3.42–3.56 (m, 2H, NCH2), 3.58–3.61 (m, 1H, CH2N), 3.70–3.75 (q, 2H, OCH2), 3.77–3.87 (m, 1H, CH2N), 6.17 (s, 1H, OH), 7.18–7.25 (m, 6H, ArH), 7.29–7.33 (m, 2H, ArH), 7.45–7.47 (m, 2H, ArH), 9.70 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 38.9, 40.4, 41.8, 42.9, 61.5, 82.4, 82.7, 126.0, 126.4, 128.1, 128.2, 128.3, 128.6, 142.6, 142.7, 161.3, 178.5, 190.2; HRMS (TOF ES+): m/z calcd for C23H25N2O4 [(M + H)+], 393.1809; found, 393.1806.
Ethyl-8-(4-bromobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-a]pyridine-7-carboxylate (7e). Yellow solid; Mp 200.9–202.5 °C; IR (KBr): 3295, 2974, 2887, 1694, 1591, 1515, 1398, 1226 cm−1; 1H NMR (400 MHz, CDCl3): δ = 0.96–0.99 (t, 3H, CCH3), 2.26–2.28 (d, 2H, CH2), 3.11–3.14 (m, 1H, CHCO), 3.46–3.57 (m, 2H, NCH2), 3.59–3.70 (q, 2H, OCH2), 3.79–3.91 (m, 2H, CH2N), 6.17 (s, 1H, OH), 7.12–7.19 (m, 2H, ArH), 7.26–7.35 (m, 3H, ArH), 7.41–7.48 (m, 4H, ArH), 9.71 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 38.8, 40.3, 41.8, 42.9, 61.7, 82.2, 82.7, 122.3, 126.0, 128.1, 128.2, 128.6, 131.3, 141.5, 142.4, 161.3, 178.4, 188.7; HRMS (TOF ES+): m/z calcd for C23H24BrN2O4 [(M + H)+], 471.0914; found, 471.0913.
Ethyl-8-(4-chlorobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7f). White solid; Mp 190.5–192.4 °C; IR (KBr): 3302, 2977, 2885, 1695, 1593, 1398, 1226, 1022 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.02–1.06 (t, 3H, CCH3), 2.33–2.35 (d, 2H, CH2), 3.17–3.22 (m, 1H, CHCO), 3.53–3.69 (m, 2H, NCH2), 3.71–3.78 (q, 2H, OCH2), 3.86–3.98 (m, 2H, CH2N), 6.24 (s, 1H, OH), 7.26–7.27 (m, 3H, ArH), 7.32–7.34 (m, 2H, ArH), 7.35–7.42 (m, 2H, ArH), 7.53–7.55 (m, 2H, ArH), 9.79 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 38.9, 40.3, 41.8, 42.9, 61.7, 82.2, 82.7, 126.0, 128.0, 128.2, 128.3, 128.6, 134.1, 141.1, 142.5, 161.3, 178.4, 188.8; HRMS (TOF ES+): m/z calcd for C23H24ClN2O4 [(M + H)+], 427.1419; found, 427.1417.
Ethyl-8-(4-fluorobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7g). Yellow solid; Mp 115.6–117.8 °C; IR (KBr): 3256, 2976, 1730, 1590, 1510, 1381, 1162, 1026 cm−1; 1H NMR (400 MHz, CDCl3): δ = 0.93–0.97 (t, 3H, CCH3), 2.25–2.26 (d, 2H, CH2), 3.07–3.12 (m, 1H, CHCO), 3.43–3.54 (m, 2H, NCH2), 3.56–3.69 (q, 2H, OCH2), 3.77–3.90 (m, 2H, CH2N), 6.17 (s, 1H, OH), 6.93–6.97 (m, 2H, ArH), 7.21–7.24 (m, 3H, ArH), 7.26–7.33 (m, 2H, ArH), 7.44–7.46 (m, 2H, ArH), 9.67 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.7, 38.9, 40.4, 41.8, 42.9, 61.6, 82.3, 82.7, 114.9 (J = 21.3 Hz), 115.1 (J = 21.3 Hz), 126.0, 128.2, 128.4 (J = 8.1 Hz), 128.5 (J = 8.1 Hz), 128.6, 138.7 (J = 2.9 Hz), 138.8 (J = 2.9 Hz), 142.5, 161.3, 161.3 (J = 249.9 Hz), 163.8 (J = 249.9 Hz), 178.3, 188.9; HRMS (TOF ES+): m/z calcd for C23H23FN2NaO4 [(M + Na)+], 433.1534; found, 433.1533.
Ethyl-5-hydroxy-8-nitro-5-phenyl-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridine-7-carboxylate (7h). Yellow solid; Mp 193.9–194.6 °C; IR (KBr): 3335, 2978, 2354, 1684, 1501, 1253, 1129, 1018 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.24–1.27 (t, 3H, CCH3), 2.25–2.42 (m, 2H, CH2), 3.17–3.22 (m, 1H, CHCO), 3.51–3.66 (m, 2H, NCH2), 3.70–3.73 (q, 1H, OCH2), 4.04–4.07 (q, 1H, OCH2), 4.19–4.23 (m, 2H, CH2N), 5.52 (s, 1H, OH), 7.28–7.36 (m, 3H, ArH), 7.44–7.46 (m, 2H, ArH), 8.87 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 13.0, 38.0, 38.3, 41.2, 43.1, 61.4, 82.4, 102.3, 124.9, 127.6, 127.7, 139.9, 156.6, 175.7; HRMS (TOF ES+): m/z calcd for C16H19N3NaO5 [(M + Na)+], 356.1217; found, 356.1217.
Methyl-8-benzoyl-5-methyl-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylate (8a). Yellow solid; Mp 200.9–201.4 °C; IR (KBr): 3234, 2954, 2897, 1739, 1530, 1473, 1157, 1014 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.82 (s, 3H, CCH3), 3.39 (s, 3H, OCH3), 3.65–3.78 (m, 4H, CH2CH2), 4.01–4.02 (m, 1H, NCH), 4.58–4.60 (m, 1H, CCH), 7.16–7.20 (m, 2H, ArH), 7.22–7.25 (m, 3H, ArH), 9.32 (br, 1H, NH); 13C NMR (100 MHZ, CDCl3): δ = 17.0, 41.5, 41.7, 43.6, 50.8, 81.7, 98.1, 125.0, 127.1, 127.3, 132.4, 141.3, 157.3, 173.7, 191.3; HRMS (TOF ES+): m/z calcd for C17H18N2NaO3 [(M + Na)+], 321.1210; found, 321.1208.
Methyl-8-(4-chlorobenzoyl)-5-methyl-1,2,3,5-tetrahydro-imidazo[1,2-a]pyridine-7-carboxylate (8b). Yellow solid; Mp 180.3–181.1 °C; IR (KBr): 3236, 2898, 1733, 1605, 1472, 1328, 1223, 1090 cm−1; 1H NMR (400 MHz, CDCl3): δ = 1.83 (s, 3H, CCH3), 3.41 (s, 3H, OCH3), 3.65–3.78 (m, 4H, CH2CH2), 3.96–3.98 (m, 1H, NCH), 4.60–4.62 (m, 1H, CCH), 7.12–7.14 (m, 2H, ArH), 7.19–7.23 (m, 3H, ArH), 9.30 (br, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 16.9, 41.3, 41.7, 43.6, 50.9, 81.6, 98.0, 126.6, 127.3, 132.4, 133.2, 139.7, 157.4, 173.5, 189.7; HRMS (TOF ES+): m/z calcd for C17H17ClN2NaO3 [(M + Na)+], 355.0820; found, 355.0825.

Acknowledgements

We gratefully acknowledge the financial was support from the National Natural Science Foundation of China (no. U1202221, 21362042, 21262042, 81160384 and 21162037) & the Talent Found in Yunnan Province (2012HB001) & Scientific Research Fund of Yunnan Provincial Education Department (2013Y363).

References

  1. For selected examples see: (a) G. Schlingmann, T. Taniguchi, H.-Y. He, R. Bigelis, H.-Y. Yang, F. E. Koehn, G. T. Carter and N. Berova, J. Nat. Prod., 2007, 70, 1180 CrossRef CAS PubMed; (b) M. P. Clark, S. K. Laughlin, M. J. Laufersweiler, R. G. Bookland, T. A. Brugel, A. Golebiowski, M. P. Sabat, J. A. Townes, J. C. VanRens, J. F. Djung, M. G. Natchus, B. De, L. C. Hsieh, S.-C. Xu, R. L. Walter, M. J. Mekel, S. A. Heitmeyer, K. K. Brown, K. Juergens, Y. O. Taiwo and M. J. Janusz, J. Med. Chem., 2004, 47, 2724 CrossRef CAS PubMed; (c) P. A. Jacobi and K. Lee, J. Am. Chem. Soc., 2000, 122, 4295 CrossRef CAS; (d) S. Sen, S. R. Kamma, R. Gundla, U. Adepally, S. Kuncha, S. Thirnathi and U. V. Prasad, RSC Adv., 2013, 3, 2404 RSC; (e) V. Sathesh, M. Sathishkumar, G. Ramachandran, R. S. Rathore and K. I. Sathiyanarayanan, RSC Adv., 2013, 3, 23035 RSC; (f) Y.-J. Xie, J. Sun and C.-G. Yan, RSC Adv., 2014, 4, 44537 RSC.
  2. (a) B. Li, M. P. A. Lyle, G. Chen, J. Li, K. J. Hu, L. Tang, M. A. Alaoui-Jamali and J. Webster, Bioorg. Med. Chem., 2007, 15, 4601 CrossRef CAS PubMed; (b) T. Hjelmgaard, M. Givskovb and J. Nielsen, Org. Biomol. Chem., 2007, 5, 344 RSC; (c) A. C. Murphy, S.-S. Gao, L.-C. Han, S. Carobene, D. Fukuda, Z. Song, J. Hothersall, R. J. Cox, J. Crosby, M. P. Crump, C. M. Thomas, C. L. Willis and T. J. Simpson, Chem. Sci., 2014, 5, 397 RSC.
  3. G. J. Morriello, R. J. Devita, S. G. Mills, J. R. Young, P. Lin, G. Doss, G. G. Chicchi, J. DeMartina, M. M. Kurtz, K.-L. C. Tsao, E. Carlson, K. Townson, A. Wheeldon, S. Boyce, N. Collinson, N. Rupniak and S. Moore, Bioorg. Med. Chem., 2008, 16, 2156 CrossRef CAS PubMed.
  4. (a) R. Nakai, H. Ogawa, A. Asai, K. Ando, T. Agatsuma, S. Matsumiya, S. Akinaga, Y. Yamashita and T. Mizukami, J. Antibiot., 2000, 53, 294 CrossRef CAS; (b) T. Agatsuma, T. Akama, S. Nara, S. Matsumiya, R. Nakai, H. Ogawa, S. Otaki, S. I. Ikeda, Y. Saitoh and Y. Kanda, Org. Lett., 2002, 4, 4387 CrossRef CAS PubMed; (c) S. S. Sajadikhah and M. T. Maghsoodloub, RSC Adv., 2014, 4, 43454 RSC.
  5. (a) T. A. M. Gulder and B. S. Moore, Angew. Chem., Int. Ed., 2010, 49, 9346 CrossRef CAS PubMed; (b) W. M. Kazmierski, W. Andrews, E. Furfine, A. Spaltenstein and L. Wright, Bioorg. Med. Chem. Lett., 2004, 14, 5689 CrossRef CAS PubMed; (c) P. Y. Ng, Y.-C. Tang, W. M. Knosp, H. S. Stadler and J. T. Shaw, Angew. Chem., Int. Ed., 2007, 46, 5352 CrossRef CAS PubMed; (d) M. Anwar, J. H. Bailey, L. C. Dickinson, H. J. Edwards, R. Goswami and M. G. Moloney, Org. Biomol. Chem., 2003, 1, 2364 RSC.
  6. (a) R. C. F. Jones, P. Patel, S. C. Hirst and M. J. Smallridge, Tetrahedron, 1998, 54, 6191 CrossRef CAS; (b) A. K. Gupta, H. Ila and H. Junjappa, Synthesis, 1988, 284 CrossRef CAS; (c) J. Liu, H.-R. Zhang, X.-R. Lin, S.-J. Yan and J. Lin, RSC Adv., 2014, 4, 27582 RSC; (d) J.-H. Zhang, M.-X. Wang and Z.-T. Huang, J. Chem. Soc., Perkin Trans. 1, 1989, 122, 95 Search PubMed; (e) Z.-T. Huang and Z.-R. Liu, Chem. Ber., 1989, 122, 95 CrossRef CAS PubMed.
  7. (a) P. Y. Ng, C. E. Masse and J. T. Shaw, Org. Lett., 2006, 8, 3999 CrossRef CAS PubMed; (b) O. Pattawong, D.-Q. Tan, J. C. Fettinger, J. T. Shaw and P. H.-Y. Cheong, Org. Lett., 2013, 15, 5130 CrossRef CAS PubMed.
  8. (a) X.-Y. Liu, C.-H. Li and C.-M. Che, Org. Lett., 2006, 8, 2707 CrossRef CAS PubMed; (b) C.-Y. Zhou and C.-M. Che, J. Am. Chem. Soc., 2007, 129, 5828 CrossRef CAS PubMed; (c) C. Shu, M.-Q. Liu, S.-S. Wang, L. Li and L.-W. Ye, J. Org. Chem., 2013, 78, 3292 CrossRef CAS PubMed.
  9. (a) C. H. Yoon, A. Nagle, C. Chen, D. Gandhi and K. W. Jung, Org. Lett., 2003, 5, 2259 CrossRef CAS PubMed; (b) T. K. Hyster, K. E. Ruhl and T. Rovis, J. Am. Chem. Soc., 2013, 135, 5364 CrossRef CAS PubMed.
  10. (a) W. V. Brabandt and N. D. Kimpe, J. Org. Chem., 2005, 70, 3369 CrossRef PubMed; (b) W. V. Brabandt and N. D. Kimpe, J. Org. Chem., 2005, 70, 8717 CrossRef PubMed; (c) J.-H. Park, J.-R. Ha, S.-J. Oh, J.-A. Kim, D.-S. Shin, T.-J. Won, Y.-F. Lamb and C. Ahna, Tetrahedron Lett., 2005, 46, 1755 CrossRef CAS PubMed.
  11. (a) F. Abels, C. Lindemann and C. Schneider, Chem.–Eur. J., 2014, 20, 1964 CrossRef CAS PubMed; (b) R. J. Carmosin and J. R. Carson, US Pat. US4689329 A1, 1987; (c) R. K. Dieter, N. Chen and R. T. Watson, Tetrahedron, 2005, 61, 3221 CrossRef CAS PubMed; (d) N. J. Race and J. F. Bower, Org. Lett., 2013, 15, 4616 CrossRef CAS PubMed; (e) S. D. Larsen and P. A. Grieco, J. Am. Chem. Soc., 1985, 107, 1768 CrossRef CAS.
  12. (a) K. Mizushige, T. Ueda, K. Yukiiri and H. Suzuki, Cardiovasc. Drug Rev., 2002, 20, 163 CrossRef CAS PubMed; (b) X.-B. Chen, L. Zhu, L. Fang, S.-J. Yan and J. Lin, RSC Adv., 2014, 4, 9926 RSC; (c) K. B. Puttaraju and K. Shivashankar, RSC Adv., 2013, 3, 20883 RSC; (d) K. Pericherla, P. Kaswan, P. Khedar, B. Khungar, K. Parang and A. Kumar, RSC Adv., 2013, 3, 18923 RSC; (e) J. B. Bharate, S. K. Guru, S. K. Jain, S. Meena, P. P. Singh, S. Bhushan, B. Singh, S. B. Bharate and R. A. Vishwakarma, RSC Adv., 2013, 3, 20869 RSC; (f) X. Meng, Y. Wang, C. Yu and P. Zhao, RSC Adv., 2014, 4, 27301 RSC; (g) M. Tajbakhsh, M. Farhang, R. Hosseinzadeh and Y. Sarrafi, RSC Adv., 2014, 4, 23116 RSC.
  13. (a) H. Li, Z. Xia, S. Chen, K. Koya, M. Ono and L. Sun, Org. Process Res. Dev., 2007, 11, 246 CrossRef CAS; (b) Y.-Q. Li, B.-C. Yang, Y. Sun, H.-Y. Wang, H.-P. Li, S. Fang, X.-Y. Niu and C. Ma, RSC Adv., 2014, 3, 21418 RSC; (c) G. S. Singh and E. E. Mmatli, Eur. J. Med. Chem., 2011, 46, 5237 CrossRef CAS PubMed.
  14. (a) V. B. Kurteva, L. A. Lubenov and D. V. Antonova, RSC Adv., 2014, 4, 175 RSC; (b) H. Zhan, L. Zhao, N. Li, L. Chen, J. Liu, J. Liao and H. Cao, RSC Adv., 2014, 4, 32013 RSC; (c) A. Maleki, S. Javanshir and M. Naimabadi, RSC Adv., 2014, 4, 30229 RSC; (d) H. Cao, Y. Lin, H. Zhan, Z. Du, X. Lin, Q.-M. Liang and H. Zhang, RSC Adv., 2012, 2, 5972 RSC.
  15. (a) T. H. Al-Tel, R. A. Al-Qawasmeh and R. Zaarour, Eur. J. Med. Chem., 2011, 46, 1874 CrossRef CAS PubMed; (b) G. Alain, L. Mohammed, E. Ahmed, S. Robert, A. Graciela, C. Olivier, C. T. Jean, K. Abdelali, M. E. El, C. D. Jean, W. Y. Myriam, J. B. Blache, D. C. Erik and P. C. Jean, J. Med. Chem., 1996, 39, 2856 CrossRef PubMed; (c) B. L. Renata, K. F. L. Cleverton, L. S. Leandro, C. R. Nelilma, L. P. M. Ana, J. B. Eliezer and A. M. F. Carlos, Bioorg. Med. Chem., 2009, 17, 74 CrossRef PubMed; (d) D. F. Nurit, L. A. Candice, L. Rousseau, B. Y. Dharmendra, D. Hajierah and B. K. Charles, Eur. J. Med. Chem., 2011, 46, 4573 CrossRef PubMed; (e) K. Kitadokoro, S. Hagishita, T. Sato, O. M. htani and K. Miki, J. Biochem., 1998, 123, 619 CrossRef CAS.
  16. (a) J. Montes-Avila, F. Delgado-Vargas, S. P. Diaz-Camacho and I. A. Rivero, RSC Adv., 2012, 2, 1827 RSC; (b) A. Dandia, S. L. Gupta and V. Parewa, RSC Adv., 2014, 4, 6908 RSC; (c) P. Bhattacharyya, S. Paul and A. R. Das, RSC Adv., 2013, 3, 3203 RSC; (d) M. R. Bodireddy, N. C. G. Reddy and S. D. Kumar, RSC Adv., 2014, 4, 17196 RSC; (e) M. M. Sarmah and D. Prajapati, RSC Adv., 2014, 4, 22955 RSC; (f) D. Chinnaraja and R. Rajalakshmi, RSC Adv., 2014, 4, 41314 RSC.
  17. (a) M. Scholtz, Ber. Dtsch. Chem. Ges., 1912, 45, 734 CrossRef CAS PubMed; (b) V. Boekelheide and R. J. Windgassen Jr, J. Am. Chem. Soc., 1959, 81, 1456 CrossRef CAS; (c) E. J. Kostik, A. Abiko and A. Oku, J. Org. Chem., 2001, 66, 2618 CrossRef CAS PubMed; (d) W. Chai, A. Kwok, V. Wong, N. I. Carruthers and J. Wu, Synlett, 2003, 2086 CrossRef CAS.
  18. (a) N. Chernyak and V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2743 CrossRef CAS PubMed; (b) S. Mishra and R. Ghosh, Synthesis, 2011, 3463 CAS; (c) B. V. S. Reddy, P. S. Reddy, Y. J. Reddy and J. S. Yadav, Tetrahedron Lett., 2011, 52, 5789 CrossRef CAS PubMed.
  19. (a) A. R. Katritzky, G. Qiu, B. Yang and H. Y. He, J. Org. Chem., 1999, 64, 7618 CrossRef CAS; (b) Y. Liu, Y. Zhang, Y. M. Shen, H. W. Hu and J. H. Xu, Org. Biomol. Chem., 2010, 8, 2449 RSC; (c) G. Poissonnet, M. H. Theret-Bettiol and R. H. Dodd, J. Org. Chem., 1996, 61, 2273 CrossRef CAS; (d) T. Sasaki, K. Kanematsu, A. Kakehi and G. Ito, Tetrahedron, 1972, 28, 4947 CrossRef CAS.
  20. Review see: (a) K.-M. Wang, S.-J. Yan and J. Lin, Eur. J. Org. Chem., 2014, 1129 CrossRef CAS PubMed; (b) Z.-T. Huang and M.-X. Wang, Heterocycles, 1994, 37, 1223 CrossRef ; for recent examples see:; (c) L.-R. Wen, Z.-R. Li, M. Li and H. Cao, Green Chem., 2012, 14, 707 RSC; (d) M. Li, P. Shao, S.-W. Wang, W. Kong and L.-R. Wen, J. Org. Chem., 2012, 77, 8956 CrossRef CAS PubMed; (e) M. Yaqub, C.-Y. Yu, Y.-M. Jia and Z.-T. Huang, Synlett, 2008, 1357 CAS; (f) C.-C. Zeng, D.-W. Ping, L.-M. Hu, X.-Q. Song and R.-G. Zhong, Org. Biomol. Chem., 2010, 8, 2465 RSC; (g) A. Alizadeh, J. Mokhtari and M. Ahmadi, Tetrahedron, 2012, 68, 319 CrossRef CAS PubMed; (h) C. Altug, A. K. Burnett, E. Caner, Y. Dürüst, M. C. Elliott, R. P. J. Glanville, C. Guy and A. D. Westwell, Tetrahedron, 2011, 67, 9522 CrossRef CAS PubMed; (i) L. Hu, K.-M. Wang, M. Zhao, X.-R. Lin, H.-Y. Zhu, S.-J. Yan and J. Lin, Tetrahedron, 2014, 70, 4478 CrossRef CAS PubMed; (j) Y.-L. Ma, K.-M. Wang, X.-R. Lin, S.-J. Yan and J. Lin, Tetrahedron, 2014, 70, 6578 CrossRef CAS PubMed; (k) F.-C. Yu, Z.-Q. Chen, X.-P. Hao, S.-J. Yan, R. Huang and J. Lin, RSC Adv., 2014, 4, 6110 RSC; (l) F.-C. Yu, Z. Chen, X. Hao, X. Jiang, S.-J. Yan and J. Lin, RSC Adv., 2013, 3, 13183 RSC; (m) F.-C. Yu, S.-J. Yan, L. Hu, Y.-C. Wang and J. Lin, Org. Lett., 2011, 13, 4782 CrossRef CAS PubMed; (n) B. Zhou, Z.-C. Liu, W.-W. Qu, R. Yang, X.-R. Lin, S.-J. Yan and J. Lin, Green Chem., 2014, 16, 4359 RSC; (o) X.-B. Chen, Z.-C. Liu, L.-F. Yang, S.-J. Yan and J. Lin, ACS Sustainable Chem. Eng., 2014, 2, 1155 CrossRef CAS; (p) X.-B. Chen, Z.-C. Liu, X.-R. Lin, R. Huang, S.-J. Yan and J. Lin, ACS Sustainable Chem. Eng., 2014, 2, 2391 CrossRef CAS; (q) Y.-C. Zhang, Z.-C. Liu, R. Yang, Z.-H. Zhang, S.-J. Yan and J. Lin, Org. Biomol. Chem., 2013, 11, 7276 RSC.
  21. (a) C. Huang, S.-J. Yan, X.-H. Zeng, X.-Y. Dai, Y. Zhang, C. Qing and J. Lin, Eur. J. Med. Chem., 2011, 46, 1172 CrossRef CAS PubMed; (b) S.-J. Yan, Y.-J. Liu, Y.-L. Chen, L. Liu and J. Lin, Bioorg. Med. Chem. Lett., 2010, 20, 5225 CrossRef CAS PubMed.
  22. J.-H. Zhang, M.-X. Wang and Z.-T. Huang, J. Chem. Soc., Perkin Trans. 1, 1999, 2087 RSC.
  23. (a) Z.-T. Huang and M.-X. Wang, Synthesis, 1992, 1273 CrossRef CAS; (b) Z.-J. Li and D. Charles, Synth. Commun., 2001, 31, 527 CrossRef CAS; (c) X.-B. Chen, X.-M. Liu, R. Huang, S.-J. Yan and J. Lin, Eur. J. Org. Chem., 2013, 4607 CrossRef CAS PubMed.

Footnotes

Electronic supplementary information (ESI) available. CCDC 1052283 (5e) and 1052294 (7e). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra04244e
The two authors contributed equally to this paper.

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.