RSC Advances

c

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Regioselective synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]pyridines \dagger

Kai-Min Wang, $\ddagger^{\text {a }}$ Yu-Lu Ma, \ddagger^{a} Xin-Rong Lin, ${ }^{\mathrm{a}}$ Sheng-Jiao Yan*a ${ }^{\text {a }}$ and Jun Lin**, ${ }^{\text {a,b }}$

${ }_{5}$ Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
First published on the web Xth $\mathbf{X X X X X X X X X ~ 2 0 0 X ~}$
DOI: 10.1039/b000000x

Abstract

A concise and efficient synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines was developed by regioselective aza-ene 10 additions and regioselective cyclic-condensation reactions of heterocyclic ketene aminals with ethyl 3-benzoylacrylate or methyl acetylacrylate derivatives under catalyst-free conditions. This method has some advantages including highly regioselective, good yields and simple work-up procedures.

${ }_{15}$ Introduction

Pyrrolo[1,2-a]imidazole derivatives are a class of important organic compounds that serve as key structural building blocks in numerous natural products and synthetic biological medicinal agents, ${ }^{1}$ owing to their wide spectrum of biological activities. ${ }_{20}$ Pyrrolo[1,2-a]imidazole derivatives have been used as antimycobacterial agents (Fig. 1, Thiolutin), ${ }^{2}$ human NK_{1} antagonists (Fig. 1), ${ }^{3}$ antitumor agents (Fig. 1, UCS1025A), ${ }^{4}$ and so on. ${ }^{5}$ As a result, more and more pyrrolo[1,2-a]imidazole derivatives have been synthesised using various methods,
25 including furan-2, 5 -dione or 1 H -pyrrole-2, 5-diones or ethyl 2bromoacetate addition and cyclisation with enamine derivatives, ${ }^{6 a-6 d}$ cyclisations of unsaturated amides, ${ }^{6 e}$ direct reaction of imines with cyclic anhydrides, ${ }^{7}$ Au-catalysed cyclisations, ${ }^{8}$ carbenoid $\mathrm{C}-\mathrm{H}$ insertions cyclisations ${ }^{9}$ and ring 30 expansions. ${ }^{10}$

Similarly, imidazo[1,2-a]-pyridines derivatives represent a class of important organic molecules that make up the core structures in drugs, including analgesics, ${ }^{11}$ cardiotonic agents, ${ }^{12}$ microtubule inhibitors, ${ }^{13}$ hypnotic drugs, ${ }^{14}$ and so on. ${ }^{15}$ Therefore,
35 various synthetic methods have been developed to prepare imidazo[1,2- a]-pyridine, including a one-pot multicomponent reaction based on the catalyst, ${ }^{16}$ Scholtz or Tschitschibabin reactions, ${ }^{17}$ metal-catalysed intramolecular cyclisations, ${ }^{18}$ and 1,3-dipolar or 1,5-dipolar cyclisations. ${ }^{19}$ However, many of these
$40{ }^{a}$ Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Advanced Analysis and Measurment Ceter, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
${ }^{b}$ State Key Laboratory of Elemento-Organic Chemistry, Nankai 45 University, Tianjin, 300071, P. R. China.

E-mail: yansj@ynu.edu.cn; linjun@ynu.edu.cn; Fax: +8687165033215. \ddagger The two authors contributed equally to this paper.
\dagger Electronic supplementary information (ESI) available: CCDC 1052283 (5e) and 1052294 (7e). For ESI and crystallographic data in CIF or other electronic 50 format see DOI:
methods involve the use of expensive or toxic transition metals as catalysts, extended reaction times, and high temperatures, in addition to requiring tedious work-up procedures.

Thiolutin

UCS 1025A

55 Fig. 1 Pyrrolo[1,2- a]imidazoles, imidazo[1,2- a]-pyridines and the target compounds.

Heterocyclic ketene aminals (HKAs), ${ }^{20}$ as important building blocks, have been used for the synthesis of a variety of ${ }_{60}$ biologically active heterocyclic compounds. ${ }^{21}$

Fig. 2 Regioselective synthesis of pyrrolo[1,2-a]imidazoles and imidazo [1,2-a]-pyridines.

65 HKAs belong to the enamine derivatives, which have served as substrates only when reacting with furan-2,5-dione, 1 H -pyrrole-2,5-diones or ethyl 2-bromoacetate additions and cyclisations with enamine derivatives, ${ }^{6}$ and syntheses of pyrrolo[1,2a]imidazoles. However, the cheap and easily available raw 70 material ethyl 3-benzoylacrylate or methyl acetylacrylate derivatives were not involved these protocols. Moreover, in
continuation of our research interests regarding the development of the synthesis and applications of HKAs for new drug discovery. Herein, we report a regioselective synthesis of pyrrolo[1,2-a]imidazole derivatives and imidazo[1,2-a]-pyridine ${ }_{5}$ derivatives from HKAs.

Results and discussion

Initially, HKAs 1a and Ethyl 3-benzoylacrylate 4a were chosen as the model substrates for optimising the reaction conditions (solvent, catalyst and temperature). The results are ${ }_{10}$ listed in Table 1. First, the model reaction was performed separately in various solvents, including toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, 1,4-dioxane, $\mathrm{CH}_{3} \mathrm{CN}$, EtOH, DMF, and $\mathrm{H}_{2} \mathrm{O}$ (Table 1, entries 1-8), and it was found that $\mathrm{CH}_{3} \mathrm{CN}$ was the best solvent, and the yield of 5a could reach 98% (Table 1, entry ${ }_{15} 5$). Next, we screened the catalyst (acids and bases) of the reaction and found that neither acids (Table 1, entries 9, 10) nor bases (Table 1, entries 11, 12) used as the catalyst obviously promoted the reactions. Finally, the model reaction was performed at different temperatures, such as ambient 20 temperature, $45^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$. The results suggest that the 5a yields decreased at all of these temperatures (Table 1, entries 13-15). Therefore, we propose that the optimum reaction conditions are $\mathbf{1 a}(1.0 \mathrm{mmol})$ and $\mathbf{4 a}(1.1 \mathrm{mmol})$, refluxed in the solution of $\mathrm{CH}_{3} \mathrm{CN}$ without any catalyst.

25 Table 1 Optimisation of reaction conditions ${ }^{a}$

Entry	Solvent	Catalyst ${ }^{\text {b }}$	$t\left({ }^{0} \mathrm{C}\right)$	Time/min	Yield ${ }^{c}$ (\%)
1	Toluene	-	reflux	30	75
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	reflux	120	90
3	THF	-	reflux	120	87
4	1,4-dioxane	-	reflux	60	82
5	$\mathrm{CH}_{3} \mathrm{CN}$	-	reflux	50	98
6	EtOH	-	reflux	60	53
7	DMF	-	reflux	30	81
8	$\mathrm{H}_{2} \mathrm{O}$	-	reflux	30	88
9	$\mathrm{CH}_{3} \mathrm{CN}$	HOAc	reflux	50	97
10	$\mathrm{CH}_{3} \mathrm{CN}$	p-TSA	reflux	50	95
11	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Et}_{3} \mathrm{~N}$	reflux	50	89
12	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	reflux	50	90
13^{d}	$\mathrm{CH}_{3} \mathrm{CN}$	-	r.t.	280	93
14	$\mathrm{CH}_{3} \mathrm{CN}$	-	45	300	95
15	$\mathrm{CH}_{3} \mathrm{CN}$	-	60	120	95

${ }^{a}$ Reagents and conditions: HKA $\mathbf{1 a}(1.0 \mathrm{mmol}), \mathbf{4 a}(1.1 \mathrm{mmol})$, solvent $(10.0 \mathrm{~mL}) .{ }^{b}$ Catalyst $10 \% .{ }^{c}$ Isolated yield based on HKA 1a. ${ }^{d}$ r.t. $=$ room temperature.

Based on the optimisation conditions, the scope and limitations of this protocol have been examined, and a number of sixmembered ring HKAs $\mathbf{1 b} \mathbf{- 1 g}$ were used as substrates to react ${ }_{30}$ with ethyl 3-benzoylacrylate 4a. As can be seen, the substituent on the aromatic HKAs had some influence on the yields and reactivities. The substituted aromatic HKAs with electrondonating groups, such as methoxyl and methyl groups (Table 2, entries 1, 2), reacted faster and gave higher yields than did those
with electron-withdrawing groups, such as chloro and fluoro groups (Table 2, entries 4-7). After that, seven-membered HKAs 2a-2d were also employed as substrates, reacting with $\mathbf{4 a}$ (Table 2 , entries $11-14$). The reactions proceeded smoothly under the same conditions and we got the final products $\mathbf{6 a}-\mathbf{6 d}$ with good 40 yields (85-95\%). The size of heterocyclic ketene aminal heterocycles also has a slight influence on the reactivity and product yield of the reaction. Generally, six-membered HKAs could react faster and give higher yields than seven-membered ones.

45 In an endeavour to expand the scope of substrates 4 (Table 2 , entries $8-10$ and 15-17), methyl acetylacrylate $\mathbf{4 b}$ was reacted with six-membered (Table 2, entries $8-10$) and sevenmembered (Table 2, entries 15-17) HKAs with both electronwithdrawing and electron-donating groups giving pyrrolo[1,2${ }_{50} a$]imidazoles $\mathbf{5 h} \mathbf{- j}$. Compared to $\mathbf{4 a}$, the yields of the $\mathbf{4 b}$ were almost the same and the reaction time was identical to the corresponding reaction. The electron-donating, as well as electron-withdrawing, groups on aromatic rings of HKAs were also tolerated, although the former gave slightly higher ${ }_{55}$ yields.

Table 2 Preparation of pyrrolo[1,2-a]imidazole derivatives ${ }^{a}$

	$\begin{aligned} & \text { 1:n } \\ & \text { 2:n } \end{aligned}$	EWG 2 4a: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3}$ 4b: R=Me,	, $\mathrm{R}^{\prime}=$			
Entry	n	EWG	4	5/6	Time/min	Yield ${ }^{\text {b }}$ (\%)
1	2	$p-\mathrm{MeOC} 6_{6} \mathrm{H}_{4} \mathrm{CO}(1 \mathbf{1 a}$		5 a	30	98
2	2	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{1 b})$	4 a	5b	30	98
3	2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}(1 \mathrm{c})$	4a	5c	50	96
4	2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{1 d})$	4a	5d	70	93
5	2	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{1 e})$	4a	5e	90	91
6	2	$\mathrm{NO}_{2}(\mathbf{1 f})$	4a	5f	120	86
7	2	$o-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{1 g})$	4 a	5g	120	90
8	2	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{1 b})$	4b	5h	30	97
9	2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}(1 \mathbf{c})$	4b	5 i	50	96
10	2	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{1 e})$	4b	5j	90	92
11	3	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{2 a)}$	4a	6 a	40	95
12	3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}(2 \mathrm{~b})$	4a	6b	70	90
13	3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}(2 \mathrm{c})$	4a	6 c	90	87
14	3	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CO}(2 \mathrm{~d})$	4a	6d	120	85
15	3	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{2 a)}$	4b	6 e	40	94
16	3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}(2 \mathrm{~b})$	4b	6 f	70	91
17	3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}(2 \mathrm{c})$	4b	6g	100	86

${ }^{a}$ Reagents and conditions: HKA (1.0 mmol), $4(1.1 \mathrm{mmol})$ and the solvent $\mathrm{CH}_{3} \mathrm{CN}(10.0 \mathrm{~mL})$ at reflux. ${ }^{b}$ Isolated yield based on HKA.

In order to further investigate the scope of HKAs, fivemembered HKAs 3a-h were also employed to react with ethyl ${ }_{60}$ 3-benzoylacrylate 4a. Surprisingly, the desired pyrrolidinone derivatives were not obtained, while we found the imidazo[1,2-a]-pyridine derivatives 7 in good yields (Table 3, entries $1-8$). As can been seen, the substituent on the aromatic HKAs 3a-h had little influence on the yield. Obtaining ${ }_{65}$ different products (5 or $\mathbf{6}$ vs. 7) of different membered ring HKAs ($\mathrm{n}=2$ or $3 \mathrm{vs} \mathrm{n}=$.1) on account of the six- or sevenmembered rings of HKAs $\mathbf{1}$ or $\mathbf{2}$ showed that it was easy to fuse a five-membered ring, while the five-membered ring of

HKAs 3 could not fuse a five-membered ring, owing to the tension of the ring, which was too high to form bicyclic fused products. Then, methyl acetylacrylate 4b was reacted with five-membered HKAs (Scheme 1, 3d and 3f).
${ }_{5}$ Table 3 Optimisation of reaction conditions ${ }^{a}$

	EWG 4a			
Entry	EWG (3)	7	Time/min	Yield ${ }^{c}$ (\%)
1	$p-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CO}(3 \mathrm{3a})$	7 a	60	93
2	$p-\mathrm{EtC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{3 b})$	7b	60	90
3	$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CO}(3 \mathrm{c})$	7 c	60	91
4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}(\mathbf{3 d})$	7d	60	90
5	$p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CO}$ (3e)	7 e	120	85
6	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{3 f})$	7 f	120	85
7	$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{3 g})$	7 g	120	82
8	NO_{2} (3h)	7h	120	81

${ }^{a}$ Reagents and conditions: HKA $\mathbf{3}(1.0 \mathrm{mmol}), \mathbf{4 a}(1.1 \mathrm{mmol})$, solvent $(10.0 \mathrm{~mL}) .{ }^{b}$ Isolated yield based on HKA 3.

Scheme 1 Synthesis of imidazo[1,2-a]-pyridine derivatives 8.

10 Two potential directions of this reaction are outlined in Scheme 2. During our investigation, we did not trace A, and only 5-8 were obtained exclusively. These results indicated that this reaction might provide a highly regioselective method for the pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]pyridines.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra, IR spectra and high-resolution mass spectra data have confirmed the structure of the target compound 5-8. In order to specifically test the structure, $\mathbf{5 e}$ and 7 e were characterised by X-ray crystallography as a representative compound, as shown in Figure 3 and 4.

Fig. 3 ORTEP diagram of 5e; ellipsoids are drawn at the 30% probability level.

${ }_{25}$ Fig. 4 ORTEP diagram of $7 \mathbf{e}$; ellipsoids are drawn at the 30% probability level.

A proposed mechanism for the synthesis of pyrrolo[1,2a]imidazoles 5-6 and imidazo[1,2-a]-pyridines 7-8 is shown in Scheme 2. First, the $\alpha-C$ of HKAs 1-3 adds to the double bond of ${ }_{30}$ compound $\mathbf{4}$ and affords intermediates $\mathbf{9}$ via an aza-ene addition reaction. ${ }^{22}$ Second, the intermediates 9 is followed by imineenamine tautomerisation to give the key compound B. Next, there are two directions for the five-membered ring of HKAs ($\mathrm{n}=1$). The key compound A underwent the intramolecular N -cyclisation 35 of the ketonic carbonyl, leading to 7 , which loses an $\mathrm{H}_{2} \mathrm{O}$ to form 10. Then, compound $\mathbf{1 0}$ forms compound $\mathbf{8}$ via an aromatic reaction. Likewise, for the six- and seven-membered ring of HKAs ($\mathrm{n}=2,3$), the key compound \mathbf{B} underwent the intramolecular N-cyclisation of the carbonyl group of ester to ${ }_{40}$ give the final products, $\mathbf{5}$ or $\mathbf{6}$.

Scheme 2 Proposed mechanism for regioselective synthesis of pyrrolo[1,2-a]imidazoles and imidazo[1,2-a]-pyridines.

Conclusions

${ }_{45}$ In summary, we have successfully developed a novel highly regioselective method for the preparation of pyrrolo[1,2a]imidazoles or imidazo[1,2-a]-pyridines under catalyst-free conditions. The ring sizes of the HKA have a significant influence on the products. For five-membered HKAs, they can
exclusively react with $\mathbf{4}$ to provide imidazo[1,2-a]-pyridines, and the yields and the reaction time of these reactions are related to the substituents of the HKAs. For the six- or seven-membered HKAs, they can react with $\mathbf{4}$ to give the corresponding pyrrolo[1,2-a]imidazoles. In addition, six-membered HKAs and HKAs bearing electron-donating groups could provide higher yields. Features of this strategy include some important aspects, like highly regioselective, convenient operation, short reaction times, the absence of catalysts, satisfactory yields and simple ${ }_{10}$ purification by washing the crude products with minimum amounts of common solvents.

Experimental Section

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX400 ${ }^{15}\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$. The chemical shifts (δ) are expressed in ppm and J values are given in Hz. Deuterated CDCl_{3} was used as a solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The melting points were determined on a XT-4A melting point 20 apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument. All chemicals and solvents were used as received without further purification unless otherwise stated. Compounds 1, 2, and $\mathbf{3}$ were prepared according to the literature. ${ }^{23}$ Materials 4 were purchased from 25 Adamas-beta Corporation Limited.

General Procedure: HKA derivatives $\mathbf{1 , 2}$ or $\mathbf{3}(1.0 \mathrm{mmol})$, Michael reaction acceptors $4(1.1 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$ were placed in a 25 mL round-bottom flask and the mixture was ${ }_{30}$ stirred at reflux for $30-120 \mathrm{~min}$. Completion of the reaction was monitored by TLC. The reaction mixture was then filtered to obtain the pure crude product, which was further washed with Hexane/EtOH (10:1) to give pure products 5-8 with a yield of $81-98 \%$. The products were further identified using FTIR, NMR 35 and HRMS.

8-(4-Methoxybenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra -hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5a). Red solid; Mp 90.5-92.9 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3440, 2930, 1634, 1518, 1443, 1253, $1165,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.99-2.06(\mathrm{~m}$, $\left.{ }_{40} 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.39-3.47(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), 3.55-3.70 (m, 2H, NCH $), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-3.96$ (m, 1H, CH), 6.70-6.87 (m, 2H, ArH), 7.14-7.29 (m, 2H, ArH), $7.31-7.41$ (m, 3H, ArH), 7.41-7.51 (m, 2H, ArH), 9.89 (br, 1H, $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=20.1,37.3,38.2,38.6$, ${ }_{45} 41.1,55.3,88.5,113.6,127.9,128.3,128.5,133.0,134.1,136.5$, 158.9, 160.7, 177.4, 184.0, 197.4; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 413.1472$; found, 413.1469.

8-(4-Methylbenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5b). Red solid; Mp so 87.9-88.5 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3394, 2923, 1636, 1522, 1443, 1262, $1164,1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}\right): \delta=2.03-2.09(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.97-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right)$,
3.40-3.50 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$), 3.61-3.74 (m, 2H, NCH_{2}), 3.89-3.91 (m, 1H, CH), 7.05-7.07 (m, 2H, ArH), 7.19-7.29 (m, 4H, ArH), 7.39-7.43 (m, 3H, ArH), $9.89(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}$, CDCl_{3}): $\delta=20.1,21.4,37.3,38.2,38.6,41.0,88.8,126.7,127.9$, $128.3,129.0,133.0,136.5,138.8,139.6,159.0,177.5,184.8$, 197.4; HRMS (TOF ES^{+}): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 397.1523$; found, 397.1525.
${ }_{60}$ 8-Benzoyl-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrr-olo[1,2-a]pyrimidin-6(2H)-one (5c). Red solid; Mp 126.4-126.9 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3438, 2894, 1729, 1528, 1443, 1265, 1158, 745 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=2.07-2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.03-3.13 (m, $2 \mathrm{H}, \mathrm{COCH}_{2}$), 3.47-3.53 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.70${ }_{65} 3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.92-3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.27-7.48(\mathrm{~m}, 10 \mathrm{H}$, ArH), 9.95 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=20.1$, $37.3,38.1,38.6,40.9,88.8,126.5,127.9,128.3,128.4,129.5$, 133.1, 136.4, 141.7, 159.1, 177.4, 184.7, 197.3; HRMS (TOF $\left.\mathrm{ES}^{+}\right): m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 361.1547; found, 361.1545.

8-(4-Chlorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5d). Red solid; Mp $141.9-143.0^{\circ} \mathrm{C}$; IR (KBr): $3441,2911,1729,1631,1527,1440$, 1265, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}\right): \delta=1.98-2.07(\mathrm{~m}$, $\left.{ }_{75} 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00-3.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.38-3.47(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.60-3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.84-3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.20-$ 7.28 (m, 4H, ArH), 7.26-7.30 (m, 2H, ArH), 7.38-7.45 (m, 3H, ArH), 9.90 (br, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=20.0$, $37.3,38.2,38.7,40.7,88.8,127.8,128.1,128.4,128.6,133.2$, ${ }_{80} 135.4,136.3,140.0,159.4,177.2,183.0,197.1$; HRMS (TOF $\left.\mathrm{ES}^{+}\right): m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 417.0976$; found, 417.0976

8-(4-Fluorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetra-hydropyrrolo[1,2-a]pyrimidin-6(2H)-one (5e). Red solid; Mp ${ }_{85} 117.6-118.7^{\circ} \mathrm{C}$; IR (KBr): $3221,3059,2878,1728,1636,1526$, $1270,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=2.00-2.10(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.41-3.51(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.62-3.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.85-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.92-$ 6.97 (m, 2H, ArH), 7.19-7.27 (m, 2H, ArH), 7.34-7.46 (m, 5H, ${ }_{90} \mathrm{ArH}$), 9.88 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=20.1$, $37.3,38.2,38.7,40.8,88.7,115.2(J=21.3 \mathrm{~Hz}), 115.5(J=21.3$ $\mathrm{Hz}), 127.8,128.4,128.7(J=8.2 \mathrm{~Hz}), 128.8(J=8.2 \mathrm{~Hz}), 133.2$, $136.3,137.8,159.3,162.1(J=247.8 \mathrm{~Hz}), 164.6(J=247.8 \mathrm{~Hz})$, 177.3, 183.3, 197.1; HRMS (TOF ES^{+}): m / z calcd for ${ }_{95} \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 401.1272; found, 401.1268.

8-Nitro-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo-[1,2-a]pyrimidin-6(2H)-one (5f). Red solid; Mp 147.4-148.1 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3464,3265,2971,1748,1668,1515,1310,1155$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=2.00-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1003.48-3.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.52-3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.72-$
3.78 (m, 2H, CH ${ }_{2} \mathrm{~N}$), 4.30-4.35 (m, 1H, CH), 7.34-7.38 (m, 2 H , ArH), 7.45-7.48 (m, 1H, ArH), 7.80-7.83 (m, 2H, ArH), 9.13 (br, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=19.4,36.4,37.3$, $39.3,39.9,105.0,128.1,128.7,133.6,135.9,154.2,137.4,197.5 ;$ ${ }_{5}$ HRMS (TOF ES ${ }^{+}$): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 324.0955; found, 324.0954.

8-(2-Chlorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo $[1,2-a]$ pyrimidin- $\mathbf{6 (2 H})$-one (5g). White solid; Mp 266.9-268.2 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3434, 3246, 2888, 1731, 1630, ${ }_{10} 1526,1365,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=2.08-$ $2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76-2.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.02-3.08(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{COCH}_{2}$), $3.46-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.55-3.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 3.64-3.76 (m, 2H, NCH 2), 6.97-7.05 (m, 2H, ArH), 7.15-7.30 (m, 4H, ArH), 7.42-7.45 (m, 1H, ArH), 7.49-7.52 (m, 2H, ArH), 159.63 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=20.0,37.3$, $38.1,38.7,39.8,90.0,126.9,127.8,128.1,128.4,129.6,129.7$, 130.1, 133.2, 136.1, 140.9, 158.9, 177.3, 182.7, 196.6; HRMS (TOF ES^{+}): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 417.0976$; found, 417.0976.

20 8-(4-Methylbenzoyl)-7-(2-oxopropyl)-1,3,4,7-tetrahydropyr-rolo $1,2-a]$ pyrimidin- $\mathbf{6 (2 H})$-one (5h). White solid; Mp 228.7-229.5 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3435, 2922, 1719, 1626, 1532, 1440, 1272, $1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{z}}, \mathrm{CDCl}_{3}$): $\delta=$ $1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.98-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.{ }_{25} \mathrm{ArCH}_{3}\right), 2.37-2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.56-2.62(\mathrm{~m}, 1 \mathrm{H}$, COCH_{2}), 3.39-3.43 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.58-3.63 (m, 2H, NCH $)_{2}$, 3.72-3.75 (m, 1H, CH), 7.10-7.12 (m, 2H, ArH), 7.31-7.33 (m, $2 \mathrm{H}, \mathrm{ArH}$), 9.88 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ $20.1,21.4,30.1,37.3,38.6,40.7,42.9,88.5,126.6,129.0,138.8$, ${ }_{30} 139.7,158.8,177.2,184.6,205.6$; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 335.1366; found, 335.1365.

8-Benzoyl-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-

\boldsymbol{a}]pyrimidin-6(2H)-one (5i). White solid; Mp 195.0-196.7 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3205, 3050, 2967, 1720, 1628, 1536, 1363, $1079 \mathrm{~cm}^{-1}$;
${ }_{35}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.98-2.01$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30-2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.54-2.59(\mathrm{~m}, 1 \mathrm{H}$, COCH_{2}), 3.38-3.43 (m, 2H, CH2N), 3.58-3.63 (m, 2H, NCH $)_{2}$, 3.70-3.72 (m, 1H, CH), 7.29-7.32 (m, 3H, ArH), 7.39-7.42 (m, $2 \mathrm{H}, \mathrm{ArH}$), 9.87 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ ${ }_{40} 20.0,30.0,37.2,38.6,40.6,42.8,88.7,126.4,128.4,129.6$, 141.6, 158.9, 177.2, 184.5, 205.6; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 321.1210; found, 321.1210.

8-(4-Fluorobenzoyl)-7-(2-oxopropyl)-1,3,4,7-tetrahydropyr-rolo[1,2-a]pyrimidin- $\mathbf{6 (2 H} \mathbf{)}$-one (5j). White solid; Mp 237.7${ }_{45} 238.8^{\circ} \mathrm{C}$; IR (KBr): 3231, 3064, 2876, 1724, 1629, 1536, 1263, $1083 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=1.77(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right), 2.01-2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36-2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2}\right)$, 2.59-2.64 (m, 1H, $\left.\mathrm{COCH}_{2}\right), 3.42-3.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.61-$
$3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.70-3.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}$, ${ }_{50} \mathrm{ArH}$), 7.42-7.45 (m, 2H, ArH), $9.88(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=20.0,30.0,37.3,38.6,40.6,42.9,88.5,115.3$ $(J=21.4 \mathrm{~Hz}), 115.5(J=21.4 \mathrm{~Hz}), 128.7(J=8.4 \mathrm{~Hz}), 128.8(J=$ $8.4 \mathrm{~Hz})$, 137.7, 159.2, $162.2(J=248.0 \mathrm{~Hz}), 164.6(J=248.0$ Hz), 177.0, 183.1, 205.4; HRMS (TOF ES ${ }^{+}$): m / z calcd for ${ }_{55} \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 339.1115$; found, 339.1115.

9-(4-Methylbenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-

 hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6a). Red solid; Mp 164.0-164.9 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3436, 2941, 1732, 1680, 1532, 1443, 1237, $1141 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ ${ }_{60} 1.99-2.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.96-3.09(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{C}\right), 3.46-3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.77-3.91(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 3.93-3.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.96-4.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.05-$ $7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.20-7.25(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.38-7.44(\mathrm{~m}, 2 \mathrm{H}$, ArH), 10.71 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ ${ }_{65} 21.4,24.9,27.4,38.6,41.1,41.2,42.7,90.6,126.6,127.9,128.3$, 129.0, 133.0, 136.5, 138.9, 139.6, 165.2, 178.8, 185.0, 197.2; HRMS (TOF $\left.\mathrm{ES}^{+}\right): m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 411.1679; found, 411.1679.9-Benzoyl-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro${ }_{70} \mathbf{7 H}$-pyrrolo [1,2-a][1,3]diazepin-7-one (6b). Red solid; Mp $159.4-160.9^{\circ} \mathrm{C}$; IR (KBr): $3454,3054,2903,1735,1617,1447$, $1275,1142, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}\right): \delta=1.92-2.08(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.95-2.97 (m, 2H, COCH 2$), 3.44-3.51(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.78-3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.83-3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.90-$ $753.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.18-7.30(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.30-7.40(\mathrm{~m}, 3 \mathrm{H}$, ArH), 10.71 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ $24.8,27.3,38.5,41.0,41.2,42.6,90.5,126.5,127.9,128.3$, 128.4, 129.4, 133.1, 136.3, 141.8, 165.3, 178.7, 184.9, 197.1; HRMS (TOF ES ${ }^{+}$): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, ${ }_{80} 397.1523$; found, 397.1519.

9-(4-Chlorobenzoyl)-8-(2-ox0-2-phenylethyl)-1,2,3,4,5,8-hex -ahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6c). Red solid; Mp 175.9-177.4 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3454, 3061, 2929, 1736, 1616, 1441, 1275, $1142 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=2.00-$ ${ }_{85} 2.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.10-3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.56-3.64$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.87-3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.91-3.93(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 4.01-4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.28-7.36(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.46-$ 7.55 (m, 3H, ArH), 10.83 (br, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}$, CDCl_{3}): $\delta=24.8,27.2,38.7,40.9,41.2,42.7,90.5,127.9,128.1$,
${ }_{90} 128.4,128.6,133.2,135.4,136.2,140.1,165.6,178.5,183.2$, 196.9; HRMS (TOF ES^{+}): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 431.1133$; found, 431.1140.

9-(4-Fluorobenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hex-ahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6d). Red ${ }^{95}$ solid; Mp 178.3-179.0 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3449, 3065, 2917, 1734, 1685, 1540, 1369, $1144 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$
2.02-2.11 (m, 4H, CH CH_{2}), 3.01-3.02 (m, 2H, COCH_{2}), 3.47$3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.78-3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.81-3.83(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 3.84-3.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.22-7.46 (m, 7H, ArH), 10.73 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.{ }_{5} \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}\right): \delta=24.8,27.3,38.6,40.9,41.2,42.6,90.4,115.2$ $(J=21.3 \mathrm{~Hz}), 115.5(J=21.3 \mathrm{~Hz}), 127.8,128.4,128.7(J=8.3$ $\mathrm{Hz}), 128.8(J=8.3 \mathrm{~Hz}), 133.2,136.3,137.9(J=2.6 \mathrm{~Hz}), 137.9$ $(J=2.6 \mathrm{~Hz}), 162.0(J=247.7 \mathrm{~Hz}), 164.5(J=247.7 \mathrm{~Hz}), 165.5$, 178.6, 183.4, 196.9; HRMS (TOF ES^{+}): m / z calcd for ${ }_{10} \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 415.1428$; found, 415.1429 .

9-(4-Methylbenzoyl)-8-(2-oxopropyl)-1,2,3,4,5,8-

hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6e). Yellow solid; Mp 202.0-203.8 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3445, 2940, 1722, 1618, 1541, 1437, 1265, $1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ $151.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.87-2.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.32-2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.56-2.61(\mathrm{~m}, 1 \mathrm{H}$, COCH_{2}), 3.46-3.52 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.71-3.73 (m, $1 \mathrm{H}, \mathrm{CH}$), $3.71-3.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.87-3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 7.10-7.13$ (m, 2H, ArH), 7.29-7.31 (m, 2H, ArH), $10.70(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ ${ }_{0}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=21.4,24.8,27.3,30.0,40.9,41.1$, 42.6, 43.2, 90.4, 126.5, 129.0, 138.9, 139.7, 165.1, 178.5, 184.9, 205.5; HRMS (TOF ES^{+}): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 349.1523; found, 349.1527.

9-Benzoyl-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7H-pyrro${ }_{25} \mathbf{l o}[\mathbf{1 , 2 - a}][\mathbf{1 , 3}]$ diazepin-7-one (6f). Yellow solid; Mp 169.9-170.6 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3445, 2933, 1723, 1619, 1543, 1444, 1262, 1148 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, 1.89-2.04 (m, 4H, CH2 CH2), 2.24-2.30 (m, 1H, COCH 2), 2.55$2.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.49-3.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.68-3.69(\mathrm{~m}$, $\left.{ }_{30} 1 \mathrm{H}, \mathrm{CH}\right), 3.70-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.87-3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 7.31-7.33 (m, 3H, ArH), 7.37-7.40 (m, 2H, ArH), 10.71 (br, 1 H , $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=24.8,27.3,29.9,40.8$, 41.1, 42.6, 43.2, 90.4, 126.4, 128.5, 129.5, 141.7, 165.2, 178.5, 184.9, 205.4; HRMS (TOF ES' ${ }^{+}$: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ ${ }_{35}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 335.1366$; found, 335.1369 .

9-(4-Chlorobenzoyl)-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7H-pyrrolo[1,2-a][1,3]diazepin-7-one (6g). Yellow solid; Mp $242.3-243.5^{\circ} \mathrm{C}$; IR (KBr): 3452, 2943, 1727, 1619, 1543, 1267, $1152,1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}\right): \delta=1.78(\mathrm{~s}, 3 \mathrm{H}$, ${ }_{40} \mathrm{COCH}_{3}$), 1.88-2.07 (m, 4H, CH2 CH $), 2.30-2.39(\mathrm{~m}, 1 \mathrm{H}$, COCH_{2}), 2.60-2.65 (m, 1H, COCH 2), $3.50-3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.67-3.69 (m, 1H, CH), 3.75-3.81 (m, 1H, NCH $)$, 3.88-3.94 (m, $1 \mathrm{H}, \mathrm{NCH}_{2}$), 7.29-7.32 (m, 2H, ArH), 7.31-7.37 (m, 2H, ArH), 10.76 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=24.7,27.2$, ${ }_{45} 30.0,40.6,41.1,42.6,43.3,90.4,128.0,128.7,135.5,140.0$, 165.5, 178.3, 183.0, 205.3; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 369.0976$; found, 369.0979 .

Ethyl-5-hydroxy-8-(4-methoxybenzoyl)-5-phenyl-1,2,3,5,6,7 -hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7a). Yellow ${ }_{50}$ solid; Mp 80.5-81.9 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3427, 2971, 1729, 1599, 1384, 1247, 1168, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=0.93-$ 0.96 (t, 3H, CCH $)^{2}$), 2.25-2.27 (m, 2H, CH $)_{2}$, 3.08-3.09 (m, 1H, CHCO), 3.42-3.47 (m, 2H, NCH $), 3.50-3.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.73 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.76-3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.78-3.85(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.78-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.19-7.22(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.23-7.25 (m, 1H, ArH), 7.28-7.33 (m, 2H, ArH), $7.45-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 9.68(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}$, $\left.\mathrm{CDCl}_{3}\right): \delta=13.7,39.0,40.5,41.8,42.9,55.3,61.5,82.3,82.7$, 113.4, 126.0, 128.1, 128.1, 128.6, 135.3, 142.6, 159.7, 161.2, ${ }_{60}$ 178.4, 189.9; HRMS (TOF ES ${ }^{+}$): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 423.1914$; found, 429.1914 .

Ethyl-8-(4-ethylbenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7b). Yellow solid; Mp 91.0-91.9 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3291, 2968, 2353, 1728, 1599, 1512, 1387, $1169 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=0.83-$ $0.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.11-1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.19-2.30(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.54-2.60\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.08-3.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCO}), 3.42-$ $3.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.51-3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.74-3.78(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.80-3.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.08-$ ${ }_{70} 7.18$ (m, 4H, ArH), 7.24-7.36 (m, 3H, ArH), 7.31-7.47 (m, 2H, ArH), 9.72 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=13.7$, 15.6, 28.7, 39.0, 40.4, 41.8, 42.9, 61.4, 82.4, 82.7, 126.0, 126.4, $127.5,128.1,128.6,140.1,142.6,144.3,161.2,178.5,190.5$; HRMS (TOF ES^{+}): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, ${ }_{75} 421.2122$; found, 421.2123.

Ethyl-5-hydroxy-8-(4-methylbenzoyl)-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7c). Orange solid; Mp 95.0-96.3 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3287, 2975, 2352, 1727, 1588, 1512, 1386, $1170 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=0.92-$ ${ }_{80} 0.96\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.24-2.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$, 3.07-3.12 (m, 1H, CHCO), 3.43-3.51 (m, 2H, NCH 2), 3.54-3.61 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.73-3.75\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.79-3.87(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 6.16$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 7.06-7.08 (m, 2H, ArH), 7.12-7.14 (m, $2 \mathrm{H}, \mathrm{ArH}), 7.24-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.29-7.33$ (m, 2H, ArH), ${ }_{85} 7.45-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 9.71$ (br, $\left.1 \mathrm{H}, \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}$, $\left.\mathrm{CDCl}_{3}\right): \delta=13.7,21.3,39.0,40.4,41.8,42.9,61.5,82.3,82.7$, $126.0,126.4,128.1,128.6,128.7,138.0,139.9,142.6,161.2$, 178.6, 190.5; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 429.1785$; found, 429.1785 .

90 Ethyl-8-benzoyl-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyri- dine-7-carboxylate (7d). Red solid; Mp $84.9-85.7^{\circ} \mathrm{C}$; IR (KBr): 3288, 2979, 1729, 1600, 1513, 1387, $1168,1024 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=0.91-0.94(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CCH}_{3}$), 2.23-2.26 (d, 2H, CH $), 3.07-3.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO})$, ${ }_{95} 3.42-3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.58-3.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.70-3.75$
(q, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $3.77-3.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.18-7.25 (m, 6H, ArH), 7.29-7.33 (m, 2H, ArH), 7.45-7.47 (m, $2 \mathrm{H}, \mathrm{ArH}$), 9.70 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ 13.7, 38.9, 40.4, 41.8, 42.9, 61.5, 82.4, 82.7, 126.0, 126.4, 128.1, ${ }_{5}$ 128.2, 128.3, 128.6, 142.6, 142.7, 161.3, 178.5, 190.2; HRMS (TOF ES ${ }^{+}$): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 393.1809$; found, 393.1806.

Ethyl-8-(4-bromobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-a]pyridine-7-carboxylate (7e). Yellow 10 solid; Mp 200.9-202.5 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3295, 2974, 2887, 1694, 1591, 1515, 1398, $1226 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ 0.96-0.99 (t, 3H, CCH $)$, 2.26-2.28 (d, 2H, CH 2), 3.11-3.14 (m, $1 \mathrm{H}, \mathrm{CHCO}), 3.46-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.59-3.70(\mathrm{q}, 2 \mathrm{H}$, OCH_{2}), 3.79-3.91 (m, 2H, CH2N), $6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.12-7.19$ 15 (m, 2H, ArH), 7.26-7.35 (m, 3H, ArH), 7.41-7.48 (m, 4H, ArH), 9.71 (br, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=13.7,38.8$, $40.3,41.8,42.9,61.7,82.2,82.7,122.3,126.0,128.1,128.2$, 128.6, 131.3, 141.5, 142.4, 161.3, 178.4, 188.7; HRMS (TOF $\left.\mathrm{ES}^{+}\right): m / z$ calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right], 471.0914$; found, 20471.0913 .

Ethyl-8-(4-chlorobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7f). White solid; Mp 190.5-192.4 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3302, 2977, 2885, 1695, 1593, 1398, 1226, $1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=$ ${ }_{25} 1.02-1.06\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.33-2.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.17-3.22(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCO}), 3.53-3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.71-3.78(\mathrm{q}, 2 \mathrm{H}$, OCH_{2}), 3.86-3.98 (m, 2H, CH $\left.{ }_{2} \mathrm{~N}\right), 6.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.26-7.27$ (m, 3H, ArH), 7.32-7.34 (m, 2H, ArH), 7.35-7.42 (m, 2H, ArH), $7.53-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 9.79$ (br, 1H, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}$, $\left.{ }_{30} \mathrm{CDCl}_{3}\right): \delta=13.7,38.9,40.3,41.8,42.9,61.7,82.2,82.7,126.0$, 128.0, 128.2, 128.3, 128.6, 134.1, 141.1, 142.5, 161.3, 178.4, 188.8; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, 427.1419; found, 427.1417.

Ethyl-8-(4-fluorobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7${ }_{35}$ hexahydroimidazo[1,2-a]pyridine-7-carboxylate (7g). Yellow solid; Mp 115.6-117.8 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3256, 2976, 1730, 1590, 1510, 1381, 1162, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{z}}, \mathrm{CDCl}_{3}$): $\delta=$ 0.93-0.97 (t, 3H, CCH 3), 2.25-2.26 (d, 2H, CH $)_{2}$, 3.07-3.12 (m, $1 \mathrm{H}, \mathrm{CHCO}), 3.43-3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.56-3.69(\mathrm{q}, 2 \mathrm{H}$, $\left.{ }_{40} \mathrm{OCH}_{2}\right), 3.77-3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.93-6.97$ (m, 2H, ArH), 7.21-7.24 (m, 3H, ArH), 7.26-7.33 (m, 2H, ArH), $7.44-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 9.67(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}$, $\left.\mathrm{CDCl}_{3}\right): \delta=13.7,38.9,40.4,41.8,42.9,61.6,82.3,82.7,114.9$ $(J=21.3 \mathrm{~Hz}), 115.1(J=21.3 \mathrm{~Hz}), 126.0,128.2,128.4(J=8.1$ $\left.{ }_{45} \mathrm{~Hz}\right), 128.5(J=8.1 \mathrm{~Hz}), 128.6,138.7(J=2.9 \mathrm{~Hz}), 138.8(J=2.9$ $\mathrm{Hz}), 142.5,161.3,161.3(J=249.9 \mathrm{~Hz}), 163.8(J=249.9 \mathrm{~Hz})$, 178.3, 188.9; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{NaO}_{4}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 433.1534$; found, 433.1533 .

Ethyl-5-hydroxy-8-nitro-5-phenyl-1,2,3,5,6,7-hexahydro${ }_{50}$ imidazo[1,2-a]pyridine-7-carboxylate (7h). Yellow solid; Mp 193.9- $\square 94.6^{\circ} \mathrm{C}$; IR (KBr): 3335, 2978, 2354, 1684, 1501, 1253, $1129,1018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}\right): \delta=1.24-1.27(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.25-2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.17-3.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO})$, $3.51-3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.70-3.73\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.04-4.07$
$55\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.19-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.28-7.36 (m, 3H, ArH), 7.44-7.46 (m, 2H, ArH), 8.87 (br, 1 H , $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=13.0,38.0,38.3,41.2$, 43.1, 61.4, 82.4, 102.3, 124.9, 127.6, 127.7, 139.9, 156.6, 175.7; HRMS (TOF ES ${ }^{+}$): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{5}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, ${ }_{60} 356.1217$; found, 356.1217.

Methyl-8-benzoyl-5-methyl-1,2,3,5-tetrahydroimidazo[1,2-

 \boldsymbol{a}]pyridine-7-carboxylate (8a). Yellow solid; Mp 200.9-201.4 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3234, 2954, 2897, 1739, 1530, 1473, 1157, 1014 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 3.39$ $65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.01-4.02(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}), 4.58-4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}), 7.16-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.22-$ 7.25 (m, 3H, ArH), 9.32 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (100 MHZ , $\left.\mathrm{CDCl}_{3}\right): \delta=17.0,41.5,41.7,43.6,50.8,81.7,98.1,125.0,127.1$, 127.3, 132.4, 141.3, 157.3, 173.7, 191.3; HRMS (TOF ES ${ }^{+}$): m / z ${ }_{70}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 321.1210; found, 321.1208.
Methyl-8-(4-chlorobenzoyl)-5-methyl-1,2,3,5-tetrahydro-

imidazo[1,2-a]pyridine-7-carboxylate (8b). Yellow solid; Mp $180.3-181.1^{\circ} \mathrm{C}$; IR (KBr): 3236, 2898, 1733, 1605, 1472, 1328, 1223, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=1.83(\mathrm{~s}, 3 \mathrm{H}$, ${ }_{75} \mathrm{CCH}_{3}$), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.96-$ $3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.60-4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}), 7.12-7.14(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.19-7.23 (m, 3H, ArH), 9.30 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MH}_{\mathrm{Z}}, \mathrm{CDCl}_{3}$): $\delta=16.9,41.3,41.7,43.6,50.9,81.6,98.0,126.6$, 127.3, 132.4, 133.2, 139.7, 157.4, 173.5, 189.7; HRMS (TOF $\left.{ }_{80} \mathrm{ES}^{+}\right): m / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{NaO}_{3}\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 355.0820$; found, 355.0825.

Acknowledgments

We gratefully acknowledge the financial was support from the National Natural Science Foundation of China (Nos. U1202221, ${ }_{85} 21362042,21262042,81160384$ and 21162037) \& the Talent Found in Yunnan Province (2012HB001) \& Scientific Research Fund of Yunnan Provincial Education Department (2013Y363).

References

1. For selected examples see: (a) G. Schlingmann, T. Taniguchi, 90 H.-Y. He, R. Bigelis, H.-Y. Yang, F. E. Koehn, G. T. Carter and N. Berova, J. Nat. Prod. 2007, 70, 1180; (b) M. P. Clark, S. K. Laughlin, M. J. Laufersweiler, R. G. Bookland, T. A. Brugel, A. Golebiowski, M. P. Sabat, J. A. Townes, J. C. VanRens, J. F. Djung, M. G. Natchus, B. De, L. C. Hsieh, S.-
$95 \quad$ C. Xu, R. L. Walter, M. J. Mekel, S. A. Heitmeyer, K. K. Brown, K. Juergens,Y. O. Taiwo, and M. J. Janusz, J. Med. Chem. 2004, 47, 2724; (c) P. A. Jacobi, K. Lee, J. Am. Chem.

Soc. 2000, 122, 4295; (d) S. Sen, S. R. Kamma, Rambabu Gundla, U. Adepally, S. Kuncha, S. Thirnathi and U. V. Prasad, RSC Adv., 2013, 3, 2404; (e) V. Sathesh, M. Sathishkumar, G. Ramachandran, R. S. Rathore and K. I. Sathiyanarayanan, RSC Adv., 2013, 3, 23035; (f) Y.-J. Xie, J. Sun and C.-G. Yan, RSC Adv., 2014, 4, 44537.
2. (a) B. Li, M. P. A. Lyle, G. Chen, J. Li, K. j. Hu, L. Tang, M. A. Alaoui-Jamali and J. Webster, Bioorg. Med. Chem., 2007, 15, 4601; (b) T. Hjelmgaard, M. Givskovb and J. Nielsen, Org. Biomol. Chem., 2007, 5, 344; (c) A. C. Murphy, S.-S. Gao, L.-C. Han, S. Carobene, D. Fukuda, Z. Song, J. Hothersall, R. J. Cox, J. Crosby, M. P. Crump, C. M. Thomas, C. L. Willis and T. J. Simpson, Chem. Sci., 2014, 5, 397.
3. G. J. Morriello, R. J. Devita, S. G. Mills, J. R. Young, P. Lin, G. Doss, G. G. Chicchi, J. DeMartina, M. M. Kurtz, K.-L. C. Tsao, E. Carlson, K. Townson, A. Wheeldon, S. Boyce, N. Collinson, N. Rupniak and S. Moore, Bioorg. Med. Chem., 2008, 16, 2156.
4. (a) R. Nakai, H. Ogawa, A. Asai, K. Ando, T. Agatsuma, S. Matsumiya, S. Akinaga, Y. Yamashita, T. Mizukami, J. Antibiot. 2000, 53, 294; (b) T. Agatsuma, T. Akama, S. Nara, S. Matsumiya, R. Nakai, H. Ogawa, S. Otaki, S. I. Ikeda, Y. Saitoh and Y. Kanda, Org. Lett., 2002, 4, 4387; (c) S. S. Sajadikhah and M. T. Maghsoodloub, RSC Adv., 2014, 4, 43454.
5. (a) T. A. M. Gulder and B. S. Moore, Angew. Chem. Int. Ed., 2010, 49, 9346; (b) W. M. Kazmierski, W. Andrews, E. Furfine, A. Spaltenstein and L. Wright, Bioorg. Med. Chem. lett., 2004, 14, 5689; (c) P. Y. Ng, Y.-C. Tang, W. M. Knosp, S. Stadler and J. T. Shaw, Angew. Chem. Int. Ed., 2007, 46, 5352. (d) M. Anwar, J. H. Bailey, L. C. Dickinson, H. J. Edwards, R. Goswami and M. G. Moloney, Org. Biomol. Chem., 2003, 1, 2364.
6. (a) R. C. F. Jones, P. patel, S. C. Hirst and M. J. Smallridge, Tetrahedron 1998, 54, 6191; (b) A. K. Gupta,H. Ila and H. Junjappa, Synthesis 1988, 284; (c) J. Liu, H.-R. Zhang, X.-R. Lin, S.-J. Yan, and J. Lin, RSC Adv. 2014, 4, 27582; (d) J.-H. Zhang, M.-X. Wang, and Z.-T. Huang, J. Chem.Soc. Perk. Trans. 1, 1989, 122, 95; (e) Z.-T. Huang and Z.-R. Huang, $40 \quad$ Chem. Ber. 1989, 122, 95.
7. (a) P. Y. Ng, C. E. Masse and J. T. Shaw, Org. Lett., 2006, 8, 3999; (b) O. Pattawong, D.-Q. Tan, J. C. Fettinger, J. T. Shaw and P. H.-Y. Cheong, Org. Lett., 2013, 15, 5130.
8. (a) X.-Y. Liu, C.-H. Li, and C.-M. Che, Org. Lett., 2006, 8, 2707; (b) C.-Y. Zhou and C.-M. Che, J. Am. Chem. Soc., 2007, 129, 5828 ; (c) C. Shu, M.-Q. Liu, S.-S. Wang, L. Li and L.-W. Ye, J. Org. Chem., 2013, 78, 3292.
9. (a) C. H. Yoon, A. Nagle, C. Chen, D. Gandhi, and K. W. Jung, Org. Lett., 2003, 5, 2259; (b) T. K. Hyster, K. E. Ruhl
10. (a) W. V. Brabandt and N. D. Kimpe, J. Org. Chem., 2005, 70, 3369; (b) W. V. Brabandt and N. D. Kimpe, J. Org. Chem., 2005, 70, 8717; (c) J.-H. Park, J.-R. Ha, S.-J. Oh, J.A. Kim, D.-S. Shin, T.-J. Won, Y.-F. Lamb and C. Ahna, Tetrahedron Lett., 2005, 46, 1755.
11. (a) F. Abels, C. Lindemann and C. Schneider, Chem. Eur. J., 2014 , 20, 1964; (b) R. J. Carmosin and J. R. Carson, US Pat. US4689329 A1, 1987; (c) R. K. Dieter, N. Chen and R. T. Watson, Tetrahedron, 2005, 61, 3221; (d) N. J. Race and J
6_{0} F. Bower, Org. Lett. 2013, 15, 4616; (e) S. D. Larsen and P. A. Grieco, J. Am. Chem. Soc., 1985, 107, 1768.
12. (a) K. Mizushige, T. Ueda, K. Yukiiri and H. Suzuki, Cardiovasc. Drug Rev., 2002, 20, 163; (b) X.-B. Chen, L. Zhu, L. Fang, S.-J. Yan and J. Lin, RSC Adv., 2014, 4, 9926; (c) K. B. Puttaraju and K. Shivashankar, RSC Adv., 2013, 3, 20883; (d) K. Pericherla, P. Kaswan, P. Khedar, B. Khungar, K. Parang and A. Kumar, RSC Adv., 2013, 3,

18923; (e) J. B. Bharate, S. K. Guru, S. K. Jain, S. Meena, P. P. Singh, S. Bhushan, B. Singh, S. B. Bharate and R. A. Vishwakarma, RSC $A d v ., 2013,3,20869$; (f) X. Meng, Y. Wang, C. Yu and P. Zhao, RSC Adv., 2014, 4, 27301; (g) M. Tajbakhsh, M. Farhang, R. Hosseinzadeh and Y. Sarrafi, RSC Adv., 2014, 4, 23116.
13. (a) H. Li, Z. Xia, S. Chen, K. Koya, M. Ono and L. Sun, Org. Process Res. Dev., 2007, 11, 246; (b) Y.-Q Li, B.-C. Yang, Y. Sun, H.-Y. Wang, H.-P. Li, S. Fang, X.-Y. Niu and C. Ma, RSC Adv., 2014, 3, 21418; (c) G. S. Singh and E. E. Mmatli, Eur. J. Med. Chem., 2011, 46, 5237.
14. (a) V. B. Kurteva, L. A. Lubenov and D. V. Antonova, RSC $A d v ., 2014,4,175$; (b) H. Zhan, L. Zhao, N. Li, L. Chen, J. Liu, J. Liao and Hua Cao, RSC Adv., 2014, 4, 32013; (c) A. Maleki, S. Javanshir and M. Naimabadi, RSC Adv., 2014, 4, 30229; (d) H. Cao, Y. Lin, H. Zhan, Z. Du, X. Lin, Q.-M. Liang and H. Zhang, RSC Adv., 2012, 2, 5972.
15. (a) T. H. Al-Tel, R. A. Al-Qawasmeh and R. Zaarour, Eur. J. Med. Chem., 2011, 46, 1874 ; (b) G. Alain, L. Mohammed, E. Ahmed, S. Robert, A. Graciela, C. Olivier, C. T. Jean, K. Abdelali, M. E. El, C. D. Jean, W. Y. Myriam, J. B. Blache, D. C. Erik and P. C. Jean, J. Med. Chem., 1996, 39, 2856; (c) B. L. Renata, K. F. L. Cleverton, L. S. Leandro, C. R. Nelilma, L. P. M. Ana, J. B. Eliezer and A. M. F. Carlos, Bioorg. Med. Chem., 2009, 17, 74; (d) D. F. Nurit, L. A. Candice, L. Rousseau, B. Y. Dharmendra,D. Hajierah and B. K. Charles, Eur. J. Med. Chem., 2011, 46, 4573; (e) K. Kitadokoro, S. Hagishita, T. Sato, O. M. htani and K. Miki, J. Biochem.,1998, 123, 619.
16. (a) J. Montes-Avila, F. Delgado-Vargas, S. P. Diaz-Camacho and I. A. Rivero, RSC Adv., 2012, 2, 1827 ; (b) A. Dandia, S. L. Gupta and V. Parewa, RSC Adv., 2014, 4, 6908; (c) P. Bhattacharyya, S. Paul and A. R. Das, RSC Adv., 2013, 3, 3203; (d) M. R. Bodireddy, N. C. G. Reddy and S. D. Kumar, RSC Adv., 2014, 4, 17196; (e) M. M. Sarmah and D. Prajapati, RSC Adv., 2014, 4, 22955; (f) D. Chinnaraja and R. Rajalakshmi, RSC Adv., 2014, 4, 41314.
17. (a) M. Scholtz, Ber. Dtsch. Chem. Ges., 1912, 45, 734; (b) V. Boekelheide and R. J. Windgassen, Jr, J. Am. Chem. Soc., 1959, 81, 1456; (c) E. J. Kostik, A. Abiko and A. Oku, J. Org. Chem., 2001, 66, 2618; (d) W. Chai, A. Kwok, V. Wong, N. I. Carruthers and J. Wu, Synlett, 2003, 2086.
18. (a) N. Chernyak and V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2743; (b) S. Mishra and R. Ghosh,Synthesis, 2011, 3463; (c) B. V. S. Reddy, P. S. Reddy, Y. J. Reddy and J. S. Yadav, Tetrahedron Lett., 2011, 52, 5789.
19. (a) A. R. Katritzky, G. Qiu, B. Yang and H. Y. He, J. Org. Chem., 1999, 64, 7618; (b) Y. Liu, Y. Zhang, Y. M. Shen, H. W. Hu and J. H. Xu, Org. Biomol. Chem., 2010, 8, 2449; (c) G. Poissonnet, M. H. Theret-Bettiol and R. H. Dodd, J. Org. Chem., 1996, 61, 2273; (d) T. Sasaki, K. Kanematsu, A. Kakehi and G. Ito, Tetrahedron, 1972, 28, 4947.
120 20. Review see: (a) K.-M. Wang, S.-J. Yan and J. Lin, Eur. J. Org. Chem., 2014, 1129; (b) Z.-T. Huang, M.-X. Wang, Heterocycles 1994, 37, 1223. For recent examples see: (c) L.-R. Wen, Z.-R. Li, M. Li, H. Cao, Green Chem. 2012, 14, 707; (d) M. Li, P. Shao, S.-W. Wang, W. Kong, L.-R. Wen, J. Org. Chem. 2012, 77, 8956; (e) M. Yaqub, C.-Y. Yu, Y.-M. Jia, Z.-T. Huang, Synlett 2008, 1357; (f) C.-C. Zeng, D.-W. Ping, L.-M. Hu, X.-Q. Song, R.-G. Zhong, Org. Biomol. Chem. 2010, 8, 2465; (g) A. Alizadeh, J. Mokhtari, M. Ahmadi, Tetrahedron 2012, 68, 319; (h) C. Altug, A. K. Burnett, E. Caner, Y. Dürüst, M. C. Elliott, R. P. J. Glanville, C. Guy, A. D. Westwell, Tetrahedron 2011, 67, 9522; (i) L. Hu, K.-M. Wang, M. Zhao, X.-R. Lin, H.-Y. Zhu, S.-J. Yan, J. Lin, Tetrahedron, 2014, 70, 4478; (j) Y.-L. Ma, K.-M. Wang, X.-R. Lin, S.-J. Yan, Jun Lin, Tetrahedron, 2014, 70,

6578; (k) F.-C. Yu, Z.-Q. Chen, X.-P. Hao, S.-J. Yan, R. Huang and J. Lin, RSC Adv., 2014, 4, 6110; (l) Fu-C. Yu, Z. Chen, X. Hao, X. Jiang, S.-J. Yan and J. Lin, RSC Adv., 2013, 3, 13183; (m) F.-C. Yu, S.-J. Yan, L. Hu, Y.-C. Wang and J. 5 Lin, Org. Lett. 2011, 13, 4782; (n) B. Zhou, Z.-C. Liu, W.-W. Qu, R. Yang, X.-R. Lin, S.-J. Yan and J. Lin, Green Chem., 2014, 16, 4359; (o) X.-B. Chen, Z.-C. Liu, L.-F. Yang, S.-J. Yan and J. Lin, ACS Sustainable Chem. Eng. 2014, 2, 1155 ; (p) X.-B. Chen, Z.-C. Liu, X.-R. Lin, R. Huang, S.-J. Yan and J. Lin, ACS Sustainable Chem. Eng. 2014, 2, 2391; (q) Y.-C. Zhang, Z.-C. Liu, R. Yang, Z.-H. Zhang, S.-J. Yan and J. Lin, Org. Biomol. Chem. 2013, 11, 7276.
21. (a) C. Huang, S.-J. Yan, X.-H. Zeng, X.-Y. Dai, Y. Zhang,; C. Qing and J. Lin, Eur. J. Med. Chem., 2011, 46, 1172; (b)

15 S. J.-Yan, Y.-J. Liu, Y.-L. Chen, L. Liu and J. Lin, Bioorg. Med. Chem. Lett., 2010, 20, 5225.
22. J.-H. Zhang, M.-X. Wang and Z.-T. Huang, J. Chem. Soc., Perkin Trans. 1, 1999, 2087.
23. (a) Z.-T. Huang, M.-X. Wang, Synthesis, 1992, 1273; (b) Z.-

20 J. Li, D. Charles, Synth. Commun., 2001, 31, 527; (c) X.-B.
Chen, X.-M. Liu, R. Huang, S.-J Yan, J. Lin, Eur. J. Org. Chem., 2013, 4607.

