I2–DMSO–PTSA: a simple and metal free oxidative cross coupling of imidazo[1,2-a]pyridines and methylketones

Madhu Chennapurama, Narender Reddy Emmadia, Chiranjeevi Bingia and Krishnaiah Atmakur*ab
aDivision of Crop Protection Chemicals, CSIR-Indian Institute of ChemicalTechnology, Tarnaka, Hyderabad 500 007, India. E-mail: krishnu@iict.res.in; Fax: +91 40 27193382; Tel: +91 40 27191436
bAcSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India

Received 5th December 2014 , Accepted 4th February 2015

First published on 5th February 2015


Abstract

A simple, highly efficient and selective oxidative cross coupling of imidazo[1,2-a]pyridine (IP) compounds (1) and methylketones (2), promoted by molecular iodine in DMSO in the presence of a catalytic amount of PTSA has been realized in a one pot reaction. This strategy has provided a general route for the synthesis of 1-aryl-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-diones (3) with a new C–C bond formation through Kornblum oxidation followed by nucleophilic attack of IP compounds (1) on the in situ formed phenylglyoxal. Simple reaction conditions, no metal catalysts and selective product formation are the advantages of this protocol.


1. Introduction

Imidazo[1,2-a]pyridine compounds are prominent among N-fused heterocycles and have shown interesting biological activities.1 Based on the diverse biological activities of these compounds i.e. antibacterial, antiviral, anti-inflammatory and C-X-C chemokine receptor type-4 (CXCR4) antagonists, a number of drugs from the imidazo[1,2-a]pyridine (IP) core moiety have come into the market. For example; Nicopidem, GSK812397, Alpidem, Minodronic acid.2 (Fig. 1).
image file: c4ra15835k-f1.tif
Fig. 1 Some of the biological active compounds containing imidazo[1,2-a]pyridine frame work.

In fact, several reports are available on the synthesis of imidazo[1,2-a]pyridine (IP) derivatives and very recently some pioneering examples of imidazo[1,2-a]pyridine compounds have been reported by S. Berteina-Raboin.3 However, in recent years, C–H bond functionalization, especially the sp3 C–H bond towards the formation of C–C and C–heteroatom bonds is one of the most attractive and powerful strategies in organic synthesis.4,5

This approach not only streamlines the existing synthesis of useful molecular entities, but also contributes to the way chemists think about chemical reactivity and plan a synthesis. Further, functionalization of imidazo[1,2-a]pyridines at 2 and 3 position is of very significant as substitution at these positions reported6 great impact in terms of biological activity. A growing repertoire of C–H bond functionalization reactions have been reported lately, including arylation, alkylation, alkenylation, insertion, amination, oxidation, borylation, and halogenation.7 Despite significant advances in method development, the application of C–H functionalization for the synthesis of structurally complex molecules remains a formidable challenge to the chemical community. Notably, the development of transition-metal free cross-coupling reactions is a highly topical and significant research area in organic synthesis as the transition metals add additional costs and generate stoichiometric amounts of metal salts as waste.

In this context, a very useful methods have been reported on Suzuki cross-coupling reaction for direct arylation of imidazole heterocycles8 promoted by Pd(OAc)2 (Scheme 1a) and recently S. M. Patil et al. reported methylthiolation of imidazo[1,2-a]pyridines with DMSO–POCl3 (Scheme 1b). Most recently, A. Kumar et al. disclosed the one pot, three-component synthesis of 1-amidomethyl-imidazo[1,2-a]pyridines catalyzed by ytterbium triflate (Scheme 1c). Further, S. Bertein-Raboin's team described metal oxidative C–H alkenylation of imidazo[1,2-a]pyridines (Scheme 1d). Furthermore, An-Xin Wu and co-workers developed useful protocols for the C–H activation of methyl ketones.9 On the other hand iodine and its salts have gained the importance as they have turned out to be a very good alternate to transitional metals and efficient mediators in oxidative coupling reactions.10,11


image file: c4ra15835k-s1.tif
Scheme 1 Previous reports (1a–d) and present work (1e).

In view of the prominence gained by the direct C–H bond functionalization reactions coupled with significance of iodine as an alternate to metal catalysts and also our continued interest on the synthesis of bioactive heterocycles,12 we have planned for the oxidative coupling of IP compounds and ketones in order to functionalize the imidazo[1,2-a]pyridines without involving any transition metal catalysts as they are known to pose environmental problem and should be avoided wherever possible. Further, it is highly desirable to develop the green protocols to access the bioactive molecules. On this account, we herein report for the first time, a simple and efficient method for the oxidative cross coupling of imidazo[1,2-a]pyridine (1) compounds with acetophenones (2) promoted by molecular iodine in DMSO in presence of an acid. This strategy provided a powerful and general route to the synthesis of 1-aryl-2-(2-phenylimidazo [1,2-a]pyridin-3-yl)ethane-1,2-diones (3) (Scheme 1e).

2. Results and discussion

Initially a model reaction was attempted with 2-phenylimidazo[1,2-a]pyridine 1a (1.0 mmol), acetophenone 2a (1.0 mmol) and I2 (1.0 mmol) in DMSO (Table 1). To our delight, formation of desired oxidative cross-coupling product 3aa was observed in 61% yield along with S-methylated product 4 in 24% at 100 °C in 12 h. The structure of the products was confirmed by their spectral data. When the dosage of I2 was increased to 1.5 (equiv.), a palpable increase in the yield of 3aa to 65% was observed. However, further increase in the dosage of I2 did not lead to significant variation. The reaction was unable to occur in the absence of I2 indicating the presence of molecular iodine is imperative for the reaction to proceed (Table 1, entry 1–4).
Table 1 Screening to optimize reaction conditiona,b

image file: c4ra15835k-u1.tif

Entry 2 (mmol) Reagent (equiv.)/additive (mol%) Temp. (°C) Yieldb (%)
3aa 4
a All the reactions were carried out using imidazo[1,2-a]pyridine (1a) (1.0 mmol) and acetophenone (2a) (1.0 mmol) in DMSO (4 mL) at above mentioned conditions.b Isolated yields.
1 1.0 I2 (1.0) 100 61 24
2 1.0 I2 (1.5) 100 65 23
3 1.0 I2 (2.0) 100 65 23
4 1.0 100
5 1.0 I2 (2.0) 110 43 35
6 1.0 I2 (2.0) 120 45 38
7 1.0 PhI(OAc)2 (1.0) 100 32
8 1.0 TBAI (1.0) 100 28
9 1.0 KI 100
10 1.0 NaI 100
11 1.0 NIS 100
12 1.5 I2 (1.0) 100 65 24
13 2.0 I2 (1.0) 100 66 22
14 1.0 I2 (1.0)/PTSA (10) 100 75
15 1.0 I2 (1.0)/H2SO4 (10) 100 47 28
16 1.0 I2 (1.0)/CSA (10) 100 42 30


It is well documented that, reaction of acetophenone with molecular iodine in DMSO result in phenylglyoxal and dimethylsulfide. Thus, the resulted phenylglyoxal and dimethylsulfide are probably competing to react with imidazo[1,2-a]pyridine derivative 1a leading to products 3aa and 4. However, formation of 3aa as major product may be attributed to the possible preferential nucleophilic attack of 1 on to phenylglyoxal. Further, experiments were conducted by employing the iodine in combination with bases such as KOH, Et3N, K2CO3, Pyridine, DBU and DABCO in order to verify the yield improvement if any. However, there was no improvement in product yields. A range of temperature was also evaluated to see the effect on the reaction (Table 1, entries 5 and 6), where 100 °C was determined as the optimal for cascade of the reaction. Next, studies were conducted by replacing the iodine with PhI(OAc)2, TBAI, KI, NaI, NIS (Table 1, entries 7–11). However, only PhI(OAc)2 and TBAI, promoted the reaction and gave the S-methylated product 4 exclusively in poor yields. In order to suppress the formation of 4, the reaction was studied by varying the stoichiometry of acetophenone (1.5 and 2.0 equivalents). However, these parameters induced the slight improvement in the yields of 3aa (Table 1, entry 12 and 13). Next, our attention was diverted on to obtain the compound 3aa exclusively, as a method for exclusive formation of S-methylated product 4 is already exist.13 Therefore, experiments were carried out by employing catalytic amount (10 mol%) of H2SO4, CSA (camphorsulfonic acid), PTSA along with molecular iodine in DMSO independently, presuming, presence of acid may help in activation of aldehyde group in phenylglyoxal. Dramatically, PTSA (Table 1, entry 14) has provided the exclusive formation of compound 3aa in good yield. Whereas, H2SO4 and CSA (Table 1, entry 15 & 16) could not vary the product ratio of 3aa & 4. Excited over the formation of 3aa as sole product, quantity of PTSA has been screened by increasing from 10 mol% to 20 and 30 mol%. However, no significant change was observed.

With the optimized conditions in hand, the generality and scope of this protocol was next explored. To our satisfaction, this protocol demonstrated wide scope for aryl methyl ketones bearing electron neutral (p-H, p-Me), electron-releasing (p-OMe, 3,4-di-OMe, 3,4,5-tri-OMe) (Scheme 2, 3aa to 3ac & 3ak, 3al) and electron-withdrawing (p-NO2, p-CN) substituents (Scheme 2, 3ad to 3ae). Electronic and steric nature of aromatic ketones has shown no influence on the reaction efficiency. Much to our satisfaction, the method was found to be mild enough to be compatible with halogenated (p-Br, p-Cl, p-F, 3,4di-F) (Scheme 2, 3af to 3ai) substrates. Furthermore heterocyclic (Scheme 2, 3am to 3ao) and napthyl methyl ketones (3ap) furnishes the oxidative products in good yields.


image file: c4ra15835k-s2.tif
Scheme 2 Scope of methyl ketones. Reaction conditions: imidazo[1,2-a]pyridine (1a) (1.0 mmol), methyl ketones (2) (1.0 mmol), I2 (1.0 mmol) in DMSO (4 mL), PTSA (10 mol%) at 100 °C. Isolated yields.

Next, we studied the reaction with varying the substitution on compound 1, where substituted imidazo[1,2-a]pyridine substrates bearing electron donating groups such as p-Me, p-OMe, 3,4(–OCH2O–) on the phenyl ring (Scheme 3, 3ba to 3da), furnished the corresponding products in high yields. Substrates bearing halide substitution were also well tolerated and gave the corresponding products in good yields (Scheme 3, 3ea to 3ga). However, the substrates bearing electron withdrawing groups such as p-NO2 and p-CN on phenyl ring were unsuccessful. This could be attributed to the delocalization of lone pair electrons on the nitrogen in the imidazopyridine ring due to the decrease in electron density on the adjacent phenyl ring. (Scheme 3, 3ja & 3ka). Furthermore, 6-phenylimidazo[2,1-b]thiazole and 2-phenylimidazo[1,2-a]pyrimidine when reacted with acetophenone gave the corresponding products (Scheme 3, 3ha and 3ia).


image file: c4ra15835k-s3.tif
Scheme 3 Scope of imidazo[1,2-a]pyridines. Reaction conditions: imidazo[1,2-a]pyridine (1b) (1.0 mmol), acetophenone (2a) (1.0 mmol), I2 (1.0 mmol) in DMSO (4 mL), PTSA (10 mol%) at 100 °C. Isolated yields.

A plausible mechanism has been proposed for the exclusive formation of 3 based on the previous reports. Treatment of acetophenone with molecular iodine generates the α-iodoketone (i), which on subsequent reaction with DMSO collapse into phenylglyoxal (ii) and dimethylsulfide (DMS) by Kornblum oxidation. Next, The imidazo[1,2-a]pyridine nucleophile could attack on the electron deficient phenylglyoxal species (iii) which was probably activated by iodine in presence of an acid leading to (iv), which on further oxidation leads to the desired product 3 (Scheme 4).


image file: c4ra15835k-s4.tif
Scheme 4 Plausible reaction mechanism for 3.

3. Conclusions

In conclusion, a highly efficient and selective I2–DMSO promoted oxidative cross-coupling in presence of PTSA has been developed with the use of imidazo[1,2-a]pyridines and methyl ketones for the construction of 1-phenyl-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-diones (3) with a new C–C bond formation. This tandem oxidative cross coupling proved easy to operate and could sequentially promote three mechanistically distinct reactions in a one pot without use of any metal catalyst.

4. Experimental section

4.1 General procedure for the synthesis of 1-phenyl-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3a)

To a suspension of imidazo[1,2-a]pyridine (1) (0.48 g, 1.0 mmoL), methyl ketone (2) (0.300 g, 1.0 mmoL) and DMSO (4 mL) in 25 mL two-neck round-bottomed flask was added iodine (0.63 g, 1.0 mmoL) followed by the catalytic amount (10 mol%) of PTSA at room temperature. Then the reaction mixture was stirred at 100 °C for 5 h. After completion of the reaction as indicated by TLC, the reaction mixture was allowed to cool to room temperature, quenched with saturated Na2S2O3 solution, extracted into ethyl acetate (2 × 10 mL). The combined organic layer was dried over anhydrous sodium sulphate and evaporated to get the crude compound which was purified by column chromatography by eluting with petroleum ether/ethyl acetate (9[thin space (1/6-em)]:[thin space (1/6-em)]1 v/v) to get pure compound 3a.
4.1.1 1-Phenyl-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3aa). Isolated as a yellow solid; yield 75%; m.p.122–123 °C; IR (KBr): 2928, 2902, 1675, 1596, 1400, 1129, 859, 720 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.84 (d, J = 6.79 Hz, 1H), 7.85 (d, J = 8.87 Hz, 1H), 7.76–7.63 (m, 3H), 7.57 (t, J = 7.36 Hz, 1H), 7.39 (t, J = 7.74 Hz, 2H), 7.33–7.20 (m, 4H), 7.10 (t, J = 7.55 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 191.3, 184.5, 158.4, 148.2, 134.2, 133.3, 132.7, 131.1, 130.0, 129.5, 129.2, 128.5, 128.2, 127.9, 117.5, 115.9 ppm; ESI-MS: m/z 327 [M + H]+; HRMS (ESI) anal. calcd for C21H15N2O2 m/z 327.11280 [M + H]+, found 327.11289.
4.1.2 1-(2-Phenylimidazo[1,2-a]pyridin-3-yl)-2-(p-tolyl)ethane-1,2-dione (3ab). Isolated as a light yellow solid; yield 73%; m.p.152–155 °C; IR (KBr): 3016, 1678, 1593, 1526, 1467, 1400, 1341, 730 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.83 (d, J = 6.86 Hz, 1H), 7.84 (d, J = 8.85 Hz, 1H), 7.67–7.61 (m, 3H), 7.31 (d, J = 7.01 Hz, 2H), 7.27 (t, J = 7.62 Hz, 1H), 7.24–7.17 (m, 3H), 7.11 (t, J = 7.62 Hz, 2H), 2.41 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 191.2, 184.5, 158.5, 148.1, 139.4, 133.9, 133.3, 132.7, 130.9, 129.8, 129.4, 129.1, 128.5, 128.3, 118.7, 117.3, 115.6, 21.1 ppm; ESI-MS: m/z 341[M + H]+; HRMS (ESI) anal. calcd For C22H17N2O2 m/z 341.1305 [M + H]+, found 341.1290.
4.1.3 1-(4-Methoxyphenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ac). Isolated as a white yellow solid; yield 76%; m.p.166–168 °C; IR (KBr): 2930, 1658, 1599, 1460, 1260, 1180, 748, 753 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.83 (d, J = 6.86, 1H), 7.84 (d, J = 9.00 Hz, 1H), 7.70 (d, J = 9.03 Hz, 2H), 7.65 (t, J = 7.32 Hz, 1H), 7.32 (d, J = 7.01 Hz, 2H), 7.27 (t, J = 6.25 Hz, 1H), 7.22 (t, J = 6.56 Hz, 1H), 7.12 (t, J = 7.78 Hz, 2H), 6.86 (d, J = 9.00 Hz, 2H), 3.87 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 190.0, 184.8, 164.4, 158.3, 132.8, 131.9, 129.8, 129.1, 128.4, 127.7, 126.4, 124.4, 117.4, 116.8, 115.6, 113.8, 113.4, 55.5 ppm; ESI-MS: m/z 357 [M + H]+; HRMS (ESI) anal. calcd for C22H17N2O3 m/z 357.1214 [M + H]+, found 357.1239.
4.1.4 1-(4-Nitrophenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ad). Isolated as a light yellow solid; yield 70%; m.p.220–224 °C; IR (KBr): 3116, 3017, 1678, 1602, 1406, 1248, 764 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.80 (d, J = 6.86 Hz, 1H), 8.23 (d, J = 8.85 Hz, 2H), 7.89 (d, J = 8.39 Hz, 3H), 7.72 (t, J = 7.47 Hz, 1H), 7.34–7.24 (m, 4H), 7.13 (t, J = 7.62 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 189.3, 182.7, 159.0, 150.5, 148.6, 137.6, 131.5, 130.3, 130.0, 129.7, 129.2, 128.1, 123.6, 118.7, 117.7, 116.1 ppm; ESI-MS: m/z 372 [M + H]+; HRMS (ESI) anal. calcd for C21H14N2O4 m/z 372.0965 [M + H]+, found 372.0984.
4.1.5 4-(2-Oxo-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetyl)benzonitrile (3ae). Isolated as a light yellow solid; yield 71%; m.p.180–185 °C; IR (KBr): 3430, 2962, 2227, 1679, 1603, 1407, 1252, 763 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.79 (d, J = Hz, 1H), 7.87 (d, J = 8.69 Hz, 1H), 7.80 (d, J = 7.78 Hz, 2H), 7.70 (t, J = 6.25 Hz, 3H), 7.35–7.22 (m, 4H), 7.13 (t, J = 7.32 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 189.6, 182.8, 158.9, 148.5, 136.2, 132.6, 132.2, 131.4, 130.0, 129.7, 129.6, 129.2, 128.0, 118.7, 117.7, 117.0, 116.1 ppm; ESI-MS: m/z 352 [M + H]+; HRMS (ESI) anal. calcd for C22H14N3O2 m/z 352.1061 [M + H]+, found 352.1086.
4.1.6 1-(4-Fluorophenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3af). Isolated as a light yellow solid; yield 71.7%; m.p.165–168 °C; IR (KBr): 2943, 2816, 1666, 1582, 1400, 1233, 763 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.82 (d, J = 6.79 Hz, 1H), 8.87 (s, 1H), 8.14–8.01 (m, 2H), 7.74 (t, J = 8.68 Hz, 2H), 7.35–7.25 (m, 2H), 7.18–7.03 (m, 5H); 13C NMR (125 MHz, CDCl3) δ 189.4, 184.2, 169.7, 167.2, 165.2157.4, 147.6, 133.0, 132.6, 132.1, 131.6, 130.0, 129.1, 129.7, 127.9, 118.6, 117.2, 116.3, 116.0, 115.8, 115.4 ppm; ESI-MS: m/z 345 [M + H]+; HRMS (ESI) anal. calcd for C21H14FN2O2 m/z 345.10436 [M + H]+, found 345.10442.
4.1.7 1-(4-Chlorophenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ag). Isolated as a white yellow solid; yield 73%; m.p.120–125 °C; IR (KBr): 2953, 2806, 1676, 1592, 1400, 1253, 753 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.81 (d, J = 6.56 Hz, 1H), 7.94 (d, J = 8.24 Hz, 1H), 7.67 (t, J = 12.51 Hz, 3H), 7.37 (d, J = 8.24 Hz, 2H), 7.33–7.21 (m, 4H), 7.14 (t, J = 7.32 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 190.0, 183.8, 158.6, 148.3, 140.6, 132.6, 131.7, 131.3, 131.1, 130.7, 129.9, 129.2, 128.9, 127.9, 118.7, 117.6, 115.9 ppm; ESI-MS: m/z 361 [M + H]+; HRMS (ESI) anal. calcd for C21H14ClN2O2 m/z 361.0757 [M + H]+, found 361.0743.
4.1.8 1-(4-Bromophenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ah). Isolated as a white solid; yield 75%; m.p.138–140 °C; IR (KBr): 3067, 2932, 1676, 1590, 1400, 1254, 753 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.81 (d, J = 6.86 Hz, 1H), 7.88 (d, J = 8.85 Hz, 1H), 7.69 (t, J = 7.47 Hz, 1H), 7.62–7.50 (m, 4H), 7.33–7.23 (m, 4H), 7.14 (t, J = 7.62 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 190.2, 183.8, 158.6, 148.3, 132.7, 132.1, 131.9, 131.6, 131.1, 130.8, 129.9, 129.5, 129.2, 127.9, 118.8, 117.6, 115.9 ppm; ESI-MS: m/z 405 [M + H]+; HRMS (ESI) anal. calcd for C21H14N2O2Br m/z 405.0247 [M + H]+, found 405.0238.
4.1.9 1-(3,5-Difluorophenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ai). Isolated as a light yellow solid; yield 74.7%; m.p.106–110 °C; IR (KBr): 3088, 2925, 1685, 1595, 1407, 1315, 988, 718 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.79 (d, J = 6.79 Hz, 1H), 7.87 (d, J = 8.87 Hz, 1H), 7.70 (t, J = 7.55 Hz, 8H), 7.38–7.13 (t, J = 8.30 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 188.5, 182.6, 162.6 (dd, J1 = 251.58, J2 = 10.89 Hz) 158.9, 148.9, 148.5, 136.0 (t, J = 7.26 Hz), 132.68, 131.34, 129.94, 129.62, 129.18, 128.0, 118.63, 117.67, 112.13 (dd, J1 = 19.98, J2 = 6.35 Hz), 109.35 (t, J = 25.4) ppm; ESI-MS: m/z 363 [M + H]+; HRMS (ESI) anal. calcd for C21H13F2N2O2 m/z 363.0931 [M + H]+, found 363.0945.
4.1.10 1-(4-Hydroxyphenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3aj). Isolated as a white solid; yield 68.1%; m.p.132.2 °C; IR (KBr): 3444, 2925, 1682, 1596, 1450, 1215, 979, 686 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.71 (t, J = 7.17 Hz, 1H), 7.87 (s, 1H), 7.78–7.74 (m, 1H), 7.59 (q, J1 = 7.17 Hz, J2 = 14.80 Hz, 1H), 7.39 (d, J = 8.54 Hz, 1H), 7.28 (d, J = 8.24 Hz, 1H), 7.22–7.11 (m, 4H), 7.04–6.95 (m, 2H), 6.58–6.48 (s, 1H); 13C NMR (75 MHz, CDCl3 + DMSO-d6) δ 188.6, 184.0, 163.1, 147.6, 140.8, 131.8, 130.8, 130.2, 129.5, 129.1, 128.9, 127.4, 127.0, 117.0, 115.6, 115.4, 114.3 ppm; ESI-MS: m/z 343 [M + H]+; HRMS (ESI) anal. calcd for C21H15N2O3 m/z 343.1096 [M + H]+, found 343.1082.
4.1.11 1-(3,4-Dimethoxyphenyl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ak). Isolated as a white solid; yield 67.2%; m.p.118–120 °C; IR (KBr): 2934, 2841, 1725, 1671, 1588, 1408, 1325, 1124, 760 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.83 (d, J = 6.79 Hz, 1H), 7.86 (d, J = 9.06 Hz, 1H), 7.68 (t, J = 8.30 Hz, 1H), 7.36–7.22 (m, 5H), 7.16 (t, J = 7.55 Hz, 2H), 6.98 (s, 2H) 3.82 (s, 3H), 3.54 (s, 3H) ppm: 13C NMR (75 MHz, CDCl3) δ 190.2, 184.2, 158.5, 152.9, 148.2, 143.5, 133.0, 130.9, 129.9, 129.2, 129.1, 128.4, 127.9, 118.8, 117.6, 115.7, 106.9, 61.0, 56.2 ppm; ESI-MS: m/z 387 [M + H]+; HRMS (ESI) anal. calcd for C23H19N2O4 m/z 387.1362 [M + H]+, found 387.1344.
4.1.12 1-(2-Phenylimidazo[1,2-a]pyridin-3-yl)-2-(3,4,5-trimethoxyphenyl)ethane-1,2-dione (3al). Isolated as a white solid; yield 67.2%; m.p.135–140 °C; IR (KBr): 2962, 2937, 1666, 1402, 1271, 1113, 761 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.82 (d, J = 6.98 Hz, 1H), 7.86 (d, J = 8.87 Hz, 1H), 7.67 (t, J = 7.17 Hz, 1H), 7.37–7.21 (m, 4H), 7.16 (t, J = 7.55 Hz, 2H), 6.9 (s, 2H), 3.95 (s, 3H), 3.83 (s, 6H) ppm; 13C NMR (125 MHz, CDCl3) δ 190.2, 184.6, 170.9, 153.3, 149.0, 148.0, 130.9, 129.9, 129.1, 127.8, 125.5, 124.3, 121.9, 117.4, 115.7, 112.0, 110.1, 109.8, 56.0, 55.9, 55.8 ppm; ESI-MS: m/z 417 [M + H]+; HRMS (ESI) anal. calcd for C24H21N2O5 m/z 417.1446[M + H]+, found 417.1450.
4.1.13 1-(2-Phenylimidazo[1,2-a]pyridin-3-yl)-2-(thiophen-2-yl)ethane-1,2-dione (3am). Isolated as a yellow solid; yield 75%; m.p.128–130 °C; IR (KBr): 2929, 2854, 1655, 1609, 1400, 1248, 729 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.76 (d, J = 6.86 Hz, 1H), 7.91 (d, J = 9.00 Hz, 1H), 7.74 (t, J = 4.88 Hz, 2H), 7.67 (t, J = 7.32 Hz, 1H), 7.40 (d, J = 7.01 Hz, 2H), 7.33 (t, J = 6.56 Hz, 1H), 7.25–7.17 (m, 3H), 7.14 (t, J = 4.88 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl3) δ 183.4, 182.8, 165.4, 158.4, 148.2, 140.4, 136.1, 135.5, 133.9, 131.0, 129.8, 129.0, 128.3, 127.7, 118.2, 117.5, 115.8 ppm; ESI-MS: m/z 333 [M + H]+; HRMS (ESI) anal. calcd for C19H13N2O2S m/z 333.0674 [M + H]+, found 333.0697.
4.1.14 1-(Furan-2-yl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3an). Isolated as a white solid; yield 70.2%; m.p.121 °C; IR (KBr): 3134, 2927, 1663, 1568, 1461, 1250, 1027, 766 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.74 (d, J = 6.42 Hz, 1H), 7.85 (d, J = 8.68 Hz, 1H), 7.71–7.58 (m, 2H), 7.45–7.10 (m, 7H), 6.55 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 182.4, 178.9, 158.5, 150.3, 147.9, 132.9, 130.9, 129.5, 128.9, 127.8, 129.4, 121.0, 118.4, 117.5, 115.7, 112.7 ppm; ESI-MS: m/z 317 [M + H]+; HRMS (ESI) anal. calcd for C19H13N2O3 m/z 317.09193 [M + H]+, found 317.09207.
4.1.15 1-(2-Oxo-2H-chromen-3-yl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ao). Isolated as a white solid; yield 62.6%; m.p.132.5 °C; IR (KBr): 2930, 1731, 1607, 1562, 1404, 1250, 875, 759 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.76 (d, J = 6.79 Hz, 1H), 8.23 (s, 1H), 7.87 (d, J = 8.87 Hz, 1H), 7.75–7.52 (m, 5H), 7.39 (t, J = 8.49 Hz, 2H), 7.25–7.18 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 187.2, 182.2, 158.9, 157.6, 155.4, 148.4, 148.2, 135.0, 133.4, 130.3, 130.1, 129.5, 129.2, 128.1, 125.2, 121.8, 118.0, 117.4, 116.9, 115.6 ppm; ESI-MS: m/z 395 [M + H]+; HRMS (ESI) anal. calcd for C24H15N2O4 m/z 395.10303 [M + H]+, found 395.10263.
4.1.16 1-(Naphthalen-2-yl)-2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ap). Isolated as a yellow solid; yield 65%; m.p.158–162 °C; IR (KBr): 2939, 2844, 1625, 1609, 1409, 1228, 739 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.90 (d, J = 6.86 Hz, 1H), 8.36 (s, 1H), 7.92–7.86 (m, 3H), 7.82 (d, J = 8.69 Hz, 1H), 7.72–7.67 (m, 2H), 7.64 (t, J = 7.01 Hz, 1H), 7.56 (t, J = 7.17 Hz, 1H), 7.29 (t, J = 8.24 Hz, 3H), 7.22 (t, J = 7.47 Hz, 1H), 7.02 (t, J = 7.93 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 209.6, 202.9, 176.8, 166.5, 154.3, 151.0, 150.5, 149.5, 149.1, 148.3, 147.7, 147.5, 146.9, 146.2, 145.3, 142.3, 137.3, 135.9, 134.3 ppm; ESI-MS: m/z 378 [M + H]+; HRMS (ESI) anal. calcd For C25H17N2O2 m/z 377.12965 [M + H]+, found 377.12975.
4.1.17 1-Phenyl-2-(2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)ethane-1,2-dione (3ba). Isolated as a light yellow solid; yield 70%; m.p. 110 °C; IR (KBr): 3065, 2921, 2841, 1674, 1605, 1229, 758 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.83 (d, J = 6.79 Hz, 1H), 7.87 (d, J = 8.87 Hz, 1H), 7.73 (d. J = 7.17 Hz, 1H), 7.66 (t, J = 7.36 Hz, 1H), 7.58 (t, J = 7.36 Hz, 1H), 7.48–7.36 (m, 2H), 7.28–7.14 (m, 4H), 6.89 (d, J = 7.74 Hz, 2H), 2.28 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 191.27, 184.51, 169.40, 158.51, 148.16, 139.43, 133.96, 133.30, 130.92, 129.89, 129.11, 128.51, 128.33, 117.38, 115.67, 21.16 ppm; ESI-MS: m/z 341 [M + H]+; HRMS (ESI) anal. calcd for C22H17N2O2 m/z 341.1305 [M + H]+, found 341.1290.
4.1.18 1-(2-(4-Methoxyphenyl)imidazo[1,2-a]pyridin-3-yl)-2-phenylethane-1,2-dione (3ca). Isolated as a light brown solid; yield 71%; m.p. 166–168 °C; IR (KBr): 3060, 2933, 2751, 1684, 1615, 1239, 658 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.83 (d, J = 6.98 Hz, 1H), 7.86 (d, J = 8.87 Hz, 1H), 7.74–7.61 (m, 3H), 7.35–7.19 (m, 4H), 7.12 (t, J = 7.55 Hz, 2H), 6.86 (d, J = 8.87 Hz, 2H), 3.87 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 190.1, 184.9, 164.3, 158.4, 148.1, 132.9, 132.0, 130.0, 129.4, 129.3, 128.4, 128.5, 127.8, 126.6, 124.5, 117.5, 117.0, 115.8, 113.9, 113.5, 55.6 ppm; ESI-MS: m/z 357 [M + H]+; HRMS (ESI) anal. calcd for C22H17N2O3 m/z 357.1271 [M + H]+, found 357.1239.
4.1.19 1-(2-(Benzo[d][1,3]dioxol-5-yl)imidazo[1,2-a]pyridin-3-yl)-2-phenylethane-1,2-dione (3da). Isolated as a light yellow solid; yield 75%; m.p. 118–120 °C; IR (KBr): 3110, 2983, 2861, 1694, 1625, 1229, 778 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.81 (d, J = 6.40 Hz, 1H), 7.85 (d, J = 8.85 Hz, 1H), 7.29 (d, J = 7.93 Hz, 2H), 7.66 (t, J = 7.78 Hz, 1H), 7.60 (t, J = 6.71 Hz, 1H), 7.43 (t, J = 7.47 Hz, 2H), 7.23 (t, J = 6.71 Hz, 1H), 6.83 (s, 1H), 6.72 (d, J = 7.78 Hz, 1H), 6.44 (d, J = 7.78 Hz, 1H), 5.91 (s, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 191.2, 184.4, 158.0, 148.8, 148.2, 147.4, 134.1, 133.3, 131.0, 129.4, 129.1, 128.5, 126.4, 124.9, 117.4, 115.7, 109.8, 107.6, 101.2 ppm; ESI-MS: m/z 371 [M + H]+; HRMS (ESI) anal. calcd for C22H15O4N2 m/z 371.10301 [M + H]+, found 371.10263.
4.1.20 1-(2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-2-phenylethane-1,2-dione (3ea). Isolated as a white solid; yield 73%; m.p. 122–123 °C; IR (KBr): 2926, 2854, 1682, 1600, 1406, 1263, 1145, 764 cm−1; 1H NMR (300 MHz, CDCl3): δ 9.82 (d, J = 6.79 Hz, 1H), 7.87 (d, J = 8.87 Hz, 1H), 7.77–7.55 (m, 4H), 7.42 (t, J = 7.55 Hz, 2H) 7.25 (t, J = 7.55 Hz, 3H), 7.07 (d, J = 8.30 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 191.4, 184.3, 157.0, 148.2, 135.7, 134.3, 133.1, 131.2, 131.1, 129.9, 129.4, 129.2, 128.6, 128.0, 118.8, 117.6, 116.0 ppm; ESI-MS: m/z 361 [M + H]+; HRMS (ESI) anal. calcd for C21H14ClN2O2 m/z 361.0757 [M + H]+, found 361.0743.
4.1.21 1-(7-Chloro-2-phenylimidazo[1,2-a]pyridin-3-yl)-2-phenylethane-1,2-dione (3fa). Isolated as a white solid; yield 73%; m.p. 180–183 °C; IR (KBr): 3160, 2923, 2851, 1624, 1505, 1239, 858 cm−1; 1H NMR (500 MHz, CDCl3): δ 9.93 (s, 1H), 7.81 (d, J = 9.46 Hz, 1H), 7.72 (d, J = 8.39 Hz, 2H), 7.66–7.57 (m, 2H), 7.41 (t, J = 7.62 Hz, 2H), 7.30–7.25 (m, 3H), 7.10 (t, J = 7.17 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 190.9, 184.7, 158.6, 146.5, 134.2, 133.1, 132.4, 132.0, 129.9, 129.6, 129.5, 128.6, 128.0, 127.2, 124.0, 117.8, 119.0 ppm; ESI-MS: m/z 362 [M + H]+; HRMS (ESI) anal. calcd for C21H14ClN2O2 m/z 362.10744 [ M + H]+, found 362.10634.
4.1.22 1-(7-Bromo-2-phenylimidazo[1,2-a]pyridin-3-yl)-2-phenylethane-1,2-dione (3ga). Isolated as a light yellow solid; yield 75%; m.p. 153–155 °C; IR (KBr): 3160, 2963, 2851, 1644, 1615, 1239, 678 cm−1; 1H NMR (300 MHz, CDCl3): δ 10.01 (s, 1H), 7.78–7.68 (m, 4H), 7.58 (t, J = 7.55 Hz, 1H), 7.40 (t, J = 7.74 Hz, 2H), 7.27 (t, J = 8.12 Hz, 3H), 7.10 (t, J = 7.17 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3) δ 190.9, 184.7, 158.5, 146.6, 134.2, 133.2, 132.4, 129.9, 129.5, 129.3, 128.6, 127.9, 118.1, 110.5 ppm; ESI-MS: m/z 405 [M + H]+; HRMS (ESI) anal. calcd for C21H14BrN2O2 m/z 405.0256 [M + H]+, found 405.0238.
4.1.23 1-Phenyl-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)ethane-1,2-dione (3ha). Isolated as a light yellow solid; yield 68%; m.p. 160–162 °C; IR (KBr): 3163, 2963, 2851, 1644, 1615, 1229, 658 cm−1; 1H NMR (300 MHz, CDCl3): δ 8.56 (d, J = 4.52 Hz, 1H), 7.76 (d, J = 6.79 Hz, 2H), 7.59 (t, J = 7.55 Hz, 1H), 7.41 (t, J = 8.30 Hz, 2H), 7.33–7.23 (m, 3H), 7.13 (q, J = 4.53 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3) δ 191.5, 182.9, 158.4, 156.0, 134.2, 133.0, 132.6, 129.6, 129.4, 129.3, 128.5, 127.8, 121.8, 121.8, 114.9 ppm; ESI-MS: m/z 333 [M + H]+; HRMS (ESI) anal. calcd for C19H13N2O2S m/z 333.07015 [M + H]+, found 333.06922.
4.1.24 1-Phenyl-2-(2-phenylimidazo[1,2-a]pyrimidin-3-yl)ethane-1,2-dione (3ia). Isolated as a white solid; yield 76.1%; m.p.171 °C; IR (KBr): 3068, 2924, 1682, 1595, 1493, 1392, 1347, 1138, 874, 685 cm−1; 1H NMR (500 MHz, CDCl3): δ 10.05 (d, J = 5.95 Hz, 1H), 8.91 (s, 1H), 7.75 (d, J = 7.32 Hz, 2H), 7.60 (t, J = 7.01 Hz, 1H), 7.42 (t, J = 7.32 Hz, 2H), 7.37 (d, J = 7.17 Hz, 2H), 7.29 (t, J = 6.25 Hz, 2H), 7.12 (t, J = 7.32 Hz, 2H) ppm; 13C NMR (75 MHz, CDCl3) δ 190.6, 185.1, 159.3, 154.9, 150.5, 136.8, 134.4, 132.8, 131.8, 130.0, 129.9, 128.6, 128.5, 127.9, 117.0, 111.9 ppm; ESI-MS: m/z 328 [M + H]+; HRMS (ESI) anal. calcd for C23H14N3O4 m/z 328.10792 [M + H]+, found 328.10805.

Acknowledgements

We thank Head Crop Protection Chemicals Division for encouragement and Director CSIR-IICT for support. We are grateful to SERB-DST, New Delhi for financial support (grant no. SB/EMEQ-075/2013).

Notes and references

  1. (a) A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor, Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008 Search PubMed; (b) A. R. Katritzky, Y. J. Xu and H. Tu, J. Org. Chem., 2003, 68, 4935 CrossRef CAS PubMed.
  2. (a) E. Kianmehr, M. Ghanbari, M. N. Niri and R. Faramarzi, J. Comb. Chem., 2010, 12, 41 CrossRef CAS PubMed; (b) A. N. Jain, J. Med. Chem., 2004, 47, 947 CrossRef CAS PubMed; (c) T. S. Harrison and G. M. Keating, CNS Drugs, 2005, 19, 65 CrossRef CAS PubMed; (d) S. M. Hanson, E. V. Morlock, K. A. Satyshur and C. Czajkowski, J. Med. Chem., 2008, 51, 7243 CrossRef CAS PubMed; (e) T. Ueda, K. Mizusgige, K. Yukiiri and T. Takahashi, Cerebrovasc. Dis., 2003, 16, 396 CrossRef CAS PubMed; (f) L. Almirante, L. Polo, A. Mugnaini, E. Provinciali, P. Rugarli, A. Biancotti, A. Gamba and W. Murmann, J. Med. Chem., 1965, 8, 305 CrossRef CAS; (g) A. Linton, P. Kang, M. Ornelas, S. Kephart, Q. Hu, M. Pairish, Y. Jiang and C. Guo, J. Med. Chem., 2011, 54, 7705 CrossRef CAS PubMed.
  3. (a) M.-A. Hiebel, Y. Fall, M.-C. Scherrmann and S. Berteina-Raboin, Eur. J. Org. Chem., 2014, 4643 CrossRef CAS; (b) A. Maialen, V. Yosu, A. Ana, Z. Ronen, C. L. Vicente, D. C. Arantzazu and C. P. Fernando, J. Org. Chem., 2010, 75, 2776 CrossRef PubMed.
  4. For representative reviews, see; (a) J. Koubachi, S. E. Kazzouli, M. Bousmina and G. Guillaument, Eur. J. Org. Chem., 2014, 5119 CrossRef CAS; (b) A. Kumar Bagdi, S. Santra, K. Monir and A. Hajra, Chem. Commun., 2015, 51, 1555 RSC; (c) K. Godulaand and D. Sames, Science, 2006, 67, 312 Search PubMed; (d) X. Chen, K. M. Engle, D. Wang and J. Yu, Angew. Chem., Int. Ed., 2009, 48, 5094 CrossRef CAS PubMed; (e) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147 CrossRef CAS PubMed; (f) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40, 5068 RSC.
  5. (a) G. Dyker, Handbook of C–H Transformations Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2005 Search PubMed; (b) Metal Catalyzed Cross-Coupling Reactions, ed. A. D. Meijere and F. Diederich, Wiley-VCH, Weinheim, 2nd edn, 2004 Search PubMed; (c) Metal-Catalyzed Cross-Coupling Reactions, ed. F. Diederich and P. J. Stang, Wiley-VCH, New York, 1998 Search PubMed; (d) Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 7 Search PubMed.
  6. (a) S. Marhadour, P. Marchand, F. Pagniez, M.-A. Bazin, C. Picot, O. Lozach, S. Ruchaud, M. Antoine, L. Meijer, N. Rachidi and P. Le Pape, Eur. J. Med. Chem., 2012, 58, 543 CrossRef CAS PubMed; (b) I. D. Luke, M. A. Carroll, T. J. Gregson, G. J. Ellames, R. W. Harrington and W. Clegg, Org. Biomol. Chem., 2013, 11, 5877 RSC.
  7. For representative references, see; (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335 CAS; (b) J. A. Labinger and J. E. Bercaw, Nature, 2002, 417, 507 CrossRef CAS PubMed; (c) C. He, S. Guo, J. Ke, J. Hao, H. Xu, H.-Y. Chen and A.-W. Lei, J. Am. Chem. Soc., 2012, 134, 5766 CrossRef CAS PubMed; (d) J. Yamaguchi, A. D. Yamaguchi and K. Itami, Angew. Chem., Int. Ed., 2012, 51, 8960 CrossRef CAS PubMed; (e) J. L. Bras and J. Muzart, Chem. Rev., 2011, 111, 1170 CrossRef PubMed; (f) C. Liu, H. Zhang, W. Shi and A.-W. Lei, Chem. Rev., 2011, 111, 1780 CrossRef CAS PubMed; (g) T. A. Ramirez, B.-G. Zhao and Y. Shi, Chem. Soc. Rev., 2012, 41, 931 RSC; (h) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Rev., 2011, 111, 1293 CrossRef CAS PubMed.
  8. (a) S. Marhadour, M. A. Bazin and P. Marchand, Tetrahedron Lett., 2012, 53, 297 CrossRef CAS PubMed; (b) S. M. Patil, S. Kulkarni, M. Mascarenhas, R. Sharma, S. M. Roopanand and A. R. Chowdhury, Tetrahedron, 2013, 69, 8255 CrossRef CAS PubMed; (c) K. Pericherla, B. Khungar and A. Kumar, Tetrahedron Lett., 2012, 53, 1253 CrossRef CAS PubMed; (d) J. Koubachi, S. Berteina-Raboin, A. Mouaddib and G. Guillaumet, Synthesis, 2009, 271 CAS.
  9. Q. Gao, X. Wu, S. Liu and A. Wu, Org. Lett., 2014, 16, 1732 CrossRef CAS PubMed.
  10. For selected reviews, see; (a) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873 CrossRef CAS PubMed; (b) K. Godula and D. Sames, Science, 2006, 312, 67 CrossRef CAS PubMed; (c) L.-X. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133 CrossRef CAS PubMed; (d) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107, 174 CrossRef CAS PubMed; (e) E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, Chem. Rev., 2007, 107, 5318 CrossRef CAS PubMed; (f) M. Catellani, E. Motti and N. Della, Acc. Chem. Res., 2008, 41, 1512 CrossRef CAS PubMed; (g) G. C. Fu, Acc. Chem. Res., 2008, 41, 1555 CrossRef CAS PubMed; (h) M. Zhang, Adv. Synth. Catal., 2009, 351, 2243 CrossRef CAS.
  11. (a) G. Zhang, S. Wang, Y. Ma, W. Kong and R. Wang, Adv. Synth. Catal., 2013, 355, 874 CrossRef CAS; (b) M. V. Varaksin, I. A. Utepova, O. N. Chupakhin and V. N. Charushin, J. Org. Chem., 2012, 77, 9087 CrossRef CAS PubMed; (c) Z. Meng, S. Sun, H. Yuan, H. Lou and L. Liu, Angew. Chem., Int. Ed., 2014, 53, 543 CrossRef CAS PubMed; (d) M. Brasse, J. A. Ellman and R. G. Bergman, Chem. Commun., 2011, 5019 RSC.
  12. (a) C. H. Madhu, E. N. Reddy, B. Chiranjeevi, N. J. Babu and A. Krishnaiah, Green Chem., 2014, 16, 3237 RSC; (b) E. N. Reddy, A. Krishnaiah, C. H. Madhu and N. J. Babu, RSC Adv., 2014, 4, 1450 Search PubMed; (c) E. N. Reddy, A. Krishnaiah, B. Chiranjeevi, G. N. Reddy, C. G. Kumar and N. J. Babu, Bioorg. Med. Chem. Lett., 2014, 24, 485 CrossRef PubMed; (d) E. N. Reddy, A. Krishnaiah, P. Sujita, C. G. Kumar and N. J. Babu, Bioorg. Med. Chem. Lett., 2012, 22, 7261 CrossRef PubMed; (e) B. Chiranjeevi, E. N. Reddy, C. H. Madhu, N. J. Babu and A. Krishnaiah, RSC Adv., 2014, 4, 35009 RSC.
  13. S. M. Patil, S. Kulkarni, M. Mascarenhas, R. Sharma, S. M. Roopan and A. R. Chowdhury, Tetrahedron, 2013, 69, 8255 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ra15835k

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.