Jian
Kang
a,
Baofu
Zhu
a,
Jiewei
Liu
a,
Bo
Wang
a,
Li
Zhang
*a and
Cheng-Yong
Su
*ab
aMOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun yat-sen University, Guangzhou, 510275, P. R. China. E-mail: zhli99@mail.sysu.edu.cn; cesscy@mail.sysu.edu.cn
bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
First published on 6th May 2015
A series of dirhodium tetrakis((4S)-3-(arylsulfonyl)oxazolidine-4-carboxylate), dirhodium tetrakis((4S,5R)-5-methyl-3-(arylsulfonyl)oxazolidine-4-carboxylate) and dirhodium tetrakis((4R)-3-(arylsulfonyl)thiazolidine-4-carboxylate 1,1-dioxide) complexes with different para-substituted arylsulfonyl groups (e.g. –NO2, –F, –CF3, –Me, –tBu, –OMe and –nC12H25) derived from L-serine, L-threonine and L-cysteine, respectively, were prepared with yields in the range of 40–87% through refluxing ligands in water with Na4Rh2(CO3)4. These chiral Rh(II) complexes have been fully characterized by EA, IR, UV-vis, NMR and specific rotation measurements. They are found to be effective chiral catalysts for asymmetric aziridination and cyclopropanation reactions in terms of reactivity and enantioselectivity. They are extremely stable and can be stored for a long period (at least 18 months) on the bench without adversely affecting their reactivity and selectivity. The heterocyclic rings as well as the substituents on the arylsulfonyl groups have critical effects on the degree of asymmetric induction. In general, a higher enantioselectivity was observed in the reactions catalyzed by the oxazolidine-4-carboxylate-derived catalysts than the thiazolidine-4-carboxylate 1,1-dioxide-based catalysts. Among these 21 new Rh(II) catalysts, the uses of dirhodium tetrakis((4S)-3-((4-dodecylphenyl)sulfonyl)oxazolidine-4-carboxylate) (Rh2(4S-DOSO)4) and dirhodium tetrakis((4S,5R)-5-methyl-3-((4-nitrophenyl)sulfonyl)oxazolidine-4-carboxylate) (Rh2(4S,5R-MNOSO)4) resulted in the highest levels of enantioselectivity in aziridination (94% ee) and cyclopropanation (98% ee) of styrene, respectively. The successful design and syntheses of these novel Rh(II) complexes enlarged the scope of accessible chiral dirhodium(II) catalysts.
The synthesis and catalytic applications of dirhodium N-sulfonylprolinates were firstly studied by the McKervey group, and then developed by the Davies group. In the early 1990s McKervy developed different N-sulfonyl functionalized Rh(II) prolinates, and they found that the tert-butyl substituted complex Rh2(S-TBSP)4 showed a remarkably improved diastereoselectivity and enantioselectivity in the cyclopropanation reactions with methyl phenyldiazoacetate.6 The Davies group developed the n-dodecyl substituted complex Rh2(S-DOSP)4, which can be dissolved in pentane even at −78 °C and displayed especially high asymmetric induction in the reactions of a variety of donor/acceptor carbenoids, including cycloaddition such as cyclopropanation, cyclopropenation, [3 + 2] annulation, tandem cyclopropanation/Cope rearrangement, and three component coupling,7 and X–H insertion such as carbenoid C–H insertions, combined C–H activation/Cope rearrangement, and tandem ylide formation/[2,3]-sigmatropic rearrangement.8 The Hansen group developed chiral Rh(II) catalysts with 4-hydroxyproline-derived ligands.9 The hydroxyl groups were O-acylated with acid chlorides such as lauroyl chloride and cyclohexylcarbonyl chloride. The formed Rh(II) catalysts efficiently promoted cyclopropanation and C–H insertion with high enantioselectivities (up to 93% ee).
The phthalimide derived Rh(II) complexes were developed by Hashimoto and co-workers.10 The optimum catalyst can vary depending on the specific reaction, but usually the tert-leucine derived catalyst Rh2(S-PTTL)4,10a and its halogen-substituted complexes Rh2(S-TFPTTL)4 (X = F),10b,c Rh2(S-TCPTTL)4 (X = Cl)10d–f and Rh2(S-TBPTTL)4 (X = Br)10g,h gave the highest asymmetric induction. Later, the Davies group developed the adamantylglycine derived complexes Rh2(S-PTAD)4 and Rh2(S-TCPTAD)4, which complemented the tert-leucine derived catalysts in nitrenoid and carbenoid reactions.11 Impressively, Rh2(S-TCPTAD)4 (X = Cl) is an exceptional catalyst for enantioselective cyclopropanation of electron-deficient alkenes11e and C–H amination.11b
The Müller group designed and synthesized N-naphthaloyl-tethered chiral dirhodium tetracarboxylates, among which Rh2(S-NTTL)4 and bromo-substituted Rh2(S-4-Br-NTTL)4 are the most efficient in terms of reactivities and selectivities.12a–d In conjunction with chiral sulfonimidamide-derived iminoiodanes, Rh2(S-NTTL)4 has been successfully employed in efficient diastereoselective intermolecular C–H amination.12e,f Compared to the former two chiral templates, rhodium N-naphthaloylaminocarboxylates have been less employed in asymmetric catalytic carbene transfer reactions.13 The development of azavinyl carbenes highlighted its importance in organic synthesis. Rh2(S-NTTL)4 outperformed Rh2(S-DOSP)4 and Rh2(S-PTTL)4 in cyclopropanation and C–H bond activation when 1,2,3-triazoles were used as the azavinyl carbene sources.14,15
The Davies group for the first time prepared dirhodium triarylcyclopropanecarboxylate complexes.16 Similar to prolinate catalysts such as Rh2(DOSP)4, these catalysts showed high enantioselectivity in a series of donor/acceptor carbene transfer reactions. The advantages of Rh(II) cyclopropanecarboxylates include their ease of synthesis and compatibility in dichloromethane as a solvent, and most importantly, they can promote highly selective C–H functionalization of primary C–H bonds.16c,d
Our interest is in enlarging the scope of accessible chiral dirhodium catalysts, considering the high need of new dirhodium(II) catalysts with different electronic and steric environments for the powerful C–C and C–N bond-forming processes in synthetic organic chemistry.17–23 Herein, we report the design and synthesis of a series of dirhodium tetrakis((4S)-3-(arylsulfonyl)oxazolidine-4-carboxylate), dirhodium tetrakis((4S,5R)-5-methyl-3-(arylsulfonyl)oxazolidine-4-carboxylate) and dirhodium tetrakis((4R)-3-(arylsulfonyl)thiazolidine-4-carboxylate 1,1-dioxide) complexes with different para-substituted arylsulfonyl groups (e.g. −NO2, −F, −CF3, −Me, −tBu, −OMe and −nC12H25) derived from L-serine, L-threonine and L-cysteine, respectively (Fig. 2). Their catalytic activities have been tested in nitrene and carbene transfer reactions.
Our catalysts are based on oxazolidine-4-carboxylate and thiazolidine-4-carboxylate, which are derived from naturally available amino acids. Their structures are related to prolinates. The major advantages of our catalysts over Rh(II) prolinates lie in much more modifications that can be made on them, as shown in Fig. 3. Synergistic effects of different hetero atoms of X (electronic effects), substituents of R on the methylene carbon (steric effects), and different R′ groups attached to the nitrogen (electronic effects and solubilities) could enrich the catalysis chemistry of the corresponding Rh(II) complexes. Appropriate combinations might endow the ligands with unique properties.
These ligands have been characterized by FTIR, NMR, HRMS-ESI, and optical rotation measurements. The IR spectra of these carboxylic acids displayed the characteristic asymmetric C
O stretching adsorption in the range of 1713–1770 cm−1. The 1H NMR (DMSO-d6) spectra clearly exhibited the characteristic peaks of the protons in the oxazolidine or thiazolidine 1,1-dioxide heterocycles. Due to the larger electronegativity of the atom O than S, the protons on the carbon atoms next to these heteroatoms appeared at the lower field in the oxazolidine ring than the thiazolidine 1,1-dioxide ring. For example, (4S)-3-((4-(trifluoromethyl)phenyl)sulfonyl)oxazolidine-4-carboxylic acid (4S-TFSO) exhibited two doublet peaks at 5.17 and 4.57 ppm for the two protons attached to the carbon at the 2-position of the oxazolidine ring, and two doublet–doublet peaks (one of the peaks appeared as a pseudo triplet) at 3.93 and 3.73 ppm for the two protons attached to the carbon at the 5-position. In comparison, (4R)-3-((4-(trifluoromethyl)phenyl)sulfonyl) thiazolidine-4-carboxylic acid 1,1-dioxide (4R-TFST) displayed two doublet peaks at 4.96 and 4.30 ppm for the protons attached to the carbon at the 2-position of the thiazolidine ring, and two doublet–doublet peaks at 3.68 and 3.56 ppm for the two protons attached to the carbon at the 5-position. In a similar way, as suggested by 13C NMR spectra and DEPT 13C NMR spectra, the two carbon nuclei next to the heteroatom O in the oxazolidine ring appeared with higher chemical shifts than the two carbon nuclei next to the atom S in the thiazolidine 1,1-dioxide ring. For example, as shown in 13C NMR (DMSO-d6) spectra, the carbon nuclei at the 2- and 5-position of the oxazolidine ring in 4S-TFSO appeared at 80.87 and 69.09 ppm, respectively, whereas the related carbon nuclei in 4S-TFST appeared at 62.40 and 51.33 ppm respectively.
The structures of (4S,5R)-5-methyl-3-((4-nitrophenyl)sulfonyl)-oxazolidine-4-carboxylic acid (4S,5R-MNOSO) and (4R)-3-((4-methoxyphenyl)sulfonyl)thiazolidine-4-carboxylic acid 1,1-dioxide (4R-MOST) have been confirmed by the X-ray diffraction study, revealing that the sulfonamide moiety and the carboxylic acid group (–COOH) are pointing to different directions (Fig. 5). In contrast, an analysis of the Cambridge Crystallographic Database (CCDB) indicated that the sulfonamide moiety and the carboxylic acid group (–COOH) (or ester group (–COOR)) in (S)-(arylsulfonyl)pyrrolidine-2-carboxylic acid (or their ester relatives) are pointing to the same direction.30 This indicated the importance of the heteroatom on the rings to their solid structures.
The prepared Rh(II) complexes have been characterized by EA, FTIR, NMR and optical rotation measurements. The IR spectra of these Rh(II)-carboxylate complexes exhibited a strong asymmetric C
O stretching adsorption at 1612–1625 cm−1 and a relatively less strong symmetric C
O stretching adsorption at 1408–1420 cm−1. Coordination of the carboxylate groups with Rh(II) atoms weakens the C
O bond, and thus resulting in absorption at a lower frequency than the free ligands (Rh2(4S,5R-MNOSO)4, 1613 cm−1vs. 4S,5R-MNOSO, 1713 cm−1).
The chemical shifts of the proton and carbon nuclei on the oxazoline rings of dirhodium complexes haven't displayed noticeable deviations from those of free ligands, whereas the carboxylate carbons of the Rh(II) complex shifted to the lower field with a large extent compared to those of the free ligands in the NMR spectra, indicative of the coordination of Rh(II)-carboxylate. For example, the carboxyl carbon in 4S,5R-MNOSO appeared at 170.40 ppm, whereas the carboxylate carbon in Rh2(4S,5R-MNOSO)4 appeared at 189.51 ppm in the 13C NMR (acetone-d6) spectra.
In order to explore the role of ligands on the electronic properties of these new dirhodium(II) complexes, the UV-vis spectra were examined (Fig. 7). The λmax for the two peaks in the visible region were ∼590 and ∼450 nm in acetone, which did not change greatly with different N-substituted oxazolidine-4-carboxylate or N-substituted thiazolidine-4-carboxylate 1,1-dioxide ligands, suggesting that these ligands did not significantly affect the electronic properties of the complex.33
The Rh(II)-catalyzed aziridination of olefins proceed via intermediate metal nitrenes (M = NR), which are generated upon decomposition of iminoiodanes (PhI = NR) directly or formed in situ from the amine and oxidant (e.g. PhI(OAc)2, PhIO) pair. In this work, the efficiency and enantioselectivity of the aziridination were tested with styrene, using NsNH2/PhI(OAc)2 as the nitrogen source (Table 1). The yields of the 1-((4-nitrophenyl)sulfonyl)-2-phenylaziridine (1) in the presence of all of the Rh(II) catalysts were rather high (up to 96%). The dodecyl substituted Rh(II) complexes (e.g. Rh2(4S-DOSO)4, Rh2(4S,5R-MDOSO)4 and Rh2(4R-DOST)4) gave high asymmetric inductions of 94%, 89% and 79% ee, respectively (entries 7, 14 and 21), which might be due to their good solubilities in organic solvents. In addition to these catalysts, another three 5-methyloxazolidine-4-carboxylate complexes (e.g. Rh2(4S,5R-MNOSO)4, Rh2(4S,5R-MFLSO)4 and Rh2(4S,5R-MTFSO)4) promote the aziridination reaction with high enantioselectivities (≥80% ee, entries 8–10). In general, Rh(II) oxazolidine-4-carboxylate catalysts displayed higher enantioselectivities than Rh(II) thiazolidine-4-carboxylate 1,1-dioxide catalysts. An additional methyl group at the 5-position endowed the 5-methyloxazolidine-4-carboxylate complexes with higher asymmetric inductions than the corresponding Rh(II) oxazolidine-4-carboxylate catalysts.
| Entry | Catalyst | Yield, % | ee, % |
|---|---|---|---|
| a Reaction conditions: to 2 mL of DCM were added sequentially MgO (29 mg, 0.72 mmol, 2.4 eq.), PhI(OAc)2 (152 mg, 0.45 mmol, 1.5 eq.), styrene (47 mg, 0.45 mmol, 1.5 eq.), NsNH2 (61 mg, 0.30 mmol, 1.0 eq.) and 2 mol% catalyst. The suspension was stirred vigorously overnight at room temperature until complete consumption of most starting material was indicated by TLC. b PhCF3. c DCE. d CH2Br2. e Toluene. | |||
| 1 | Rh2(4S-NOSO)4 | 85 | 47 |
| 2 | Rh2(4S-FLSO)4 | 79 | 42 |
| 3 | Rh2(4S-TFSO)4 | 96 | 46 |
| 4 | Rh2(4S-MESO)4 | 68 | 35 |
| 5 | Rh2(4S-TBSO)4 | 90 | 41 |
| 6 | Rh2(4S-MOSO)4 | 66 | 50 |
| 7 | Rh2(4S-DOSO)4 | 86 | 94 |
| 8 | Rh2(4S,5R-MNOSO)4 | 92 | 88 |
| 9 | Rh2(4S,5R-MFLSO)4 | 81 | 80 |
| 10 | Rh2(4S,5R-MFSO)4 | 48 | 80 |
| 11 | Rh2(4S,5R-MMESO)4 | 93 | 49 |
| 12 | Rh2(4S,5R-MTBSO)4 | 55 | 55 |
| 13 | Rh2(4S,5R-MMOSO)4 | 55 | 56 |
| 14 | Rh2(4S,5R-MDOSO)4 | 92 | 89 |
| 15 | Rh2(4R-NOST)4 | 89 | 13 |
| 16 | Rh2(4R-FLST)4 | 93 | 16 |
| 17 | Rh2(4R-TFST)4 | 90 | 9 |
| 18 | Rh2(4R-MEST)4 | 90 | 14 |
| 19 | Rh2(4R-TBST)4 | 88 | 55 |
| 20 | Rh2(4R-MOST)4 | 91 | 13 |
| 21 | Rh2(4R-DOST)4 | 90 | 79 |
| 22 | Rh2(S-NOSP)4 | 69 | −46 |
| 23 | Rh2(S-TFSP)4 | 96 | 60 |
| 24 | Rh2(S-MOSP)4 | 95 | 81 |
| 25 | Rh2(S-DOSP)4 | 95 | 73 |
| 26 | Rh2(S-PTAD)4 | 90 | 25 |
| 27 | Rh2(S-NTTL)4 | 92 | 60 |
| 28b | Rh2(4S,5R-MNOSO)4 | 84 | 78 |
| 29c | Rh2(4S,5R-MNOSO)4 | 75 | 65 |
| 30d | Rh2(4S,5R-MNOSO)4 | 70 | 55 |
| 31e | Rh2(4S,5R-MNOSO)4 | 78 | 15 |
In both systems of rhodium tetrakis((4S)-3-(arylsulfonyl)oxazolidine-4-carboxylate) and rhodium tetrakis((4R)-3-(arylsulfonyl)thiazolidine-4-carboxylate 1,1-dioxide), the electronic effects of the N-sulfonyl functionalities have negligible influence on the enantioselectivity results, as the nitro- and methoxy-substituted oxazolidine carboxylate complexes gave similar asymmetric induction (entries 1 vs. 6, and 15 vs. 20).
In contrast, the arylsulfonyl groups with different electronic effects have critical effects on the degree of asymmetric induction catalyzed by rhodium tetrakis((4S,5R)-5-methyl-3-(arylsulfonyl)oxazolidine-4-carboxylate). The asymmetric induction was good in the reactions catalyzed by the –NO2, –F or –CF3 functionalized catalysts (80–88% ee, entries 8–10), but only modest in the presence of –Me, –tert-Bu or –OMe substituted Rh(II) complexes (49–56% ee, entries 11–13).
Sulfonated rhodium prolinates Rh2(S-NOSP)4, Rh2(S-TFSP)4, Rh2(S-MOSP)4 and Rh2(S-DOSP)4 have been prepared according to the reported procedures (Fig. 1),31 and their activities have been tested in the aziridination of styrene. Under our standard reaction conditions, they gave rise to −46, 60, 81 and 73% ee, respectively (entries 21–25). Next, we have also examined the catalytic activities of Rh2(S-PTAD)4 and Rh2(S-NTTL)4, which are popular catalysts in nitrene transfer reactions,11,12 and they led to the formation of the aziridine product in 25% and 60% ee, respectively (entries 26 and 27).
The effects of other solvents (e.g. PhCF3, DCE, CH2Br2, toluene) on the enantioselectivity were also tested, and the enantiomeric excess was in the range of 15–78% ee using Rh2(4S,5R-MNOSO)4 as the catalyst (entries 28–31). Among the solvents that have been tested for catalytic aziridination reactions, it seemed that toluene was the worst choice and the asymmetric induction was only 15% ee.
Comparison of the catalytic data in the presence of different chiral Rh(II) catalysts show that, our catalysts Rh2(4S-DOSO)4 and Rh2(4S,5R-MDOSO)4 are so far the most effective Rh(II) catalysts in the aziridination reaction of styrene in terms of yields and enantioselectivities. We have further tested the catalytic capabilities of our catalysts in intramolecular C–H bond amination of sulfamate esters such as 2,3-dihydro-1H-inden-2-yl sulfamate developed by Du Bois.19 The asymmetric inductions, however, were not satisfactory. The best result was only in modest asymmetric induction (40% ee) and achieved in Rh2(4S,5R-MNOSO)4-catalyzed amination reaction.
We have shown that our Rh(II) catalysts can efficiently promote aziridination reactions with moderate to high asymmetric inductions (up to 94% ee). Next, we explored the catalytic capabilities of our catalysts in cyclopropanation reactions. As the test reaction cyclopropanation with vinyldiazoacetates such as (E)-methyl 2-diazo-4-phenylbut-3-enoate was chosen. This protocol employing Rh2(DOSP)4 as the catalyst and pentane as the solvent at −78 °C has been successfully elaborated by Davies et al. and has transformed donor/acceptor substituted diazo compounds into cyclopropanes with different alkenes in high to excellent enantioselectivities (up to 98% ee).7a No attempt was made on our part to improve the Davies protocol; rather, it served as a well-established test reaction to investigate the effects of heterocycles and N-sulfonyl functionalities on the catalytic results of carbene transfer reactions.
The evaluation of our catalysts was initially carried out using the cyclopropanation between the (E)-methyl 2-diazo-4-phenylbut-3-enoate (1.0 eq.) and styrene (5.0 eq.) with 0.02 equiv. of the catalyst and 1.0 eq. of methyl benzoate as the additive and toluene as the solvent at −40 °C as the standard reaction.8m The catalytic results are shown in Table 2. GC-MS analyses of the reaction mixtures suggest that excellent E-/Z-diastereoselectivities (ranging from 92
:
8 to 96
:
4, entries 1–21) were obtained. All the reactions proceeded in high to excellent yields ranging from 80 to 96%, and in moderate to excellent asymmetric induction (up to 98% ee). The absolute stereochemistry of the major isomer in all cases was 1S,2S, which was determined by comparison of the HPLC spectra with that of an authentic sample.7a
| Entry | Catalyst | Yield, % | E-/Z- | ee, % |
|---|---|---|---|---|
| a Reaction conditions: a solution of diazo compound (40 mg, 0.2 mmol, 1.0 eq.) in 1 mL toluene was added slowly to the solution of styrene (104 mg, 1.0 mmol, 5.0 eq.), methyl benzoate (27 mg, 0.2 mmol, 1.0 eq.) and 2 mol% catalyst in 1 mL toluene at −40 °C. The resulting solution was vigorously stirred at −40 °C for two days until most diazo compound was completely consumed. b −40 °C, no PhCO2Me. c −30 °C, no PhCO2Me. d −20 °C, no PhCO2Me. e 0 °C, no PhCO2Me. f Room temperature, no PhCO2Me. g With 0.1 mol% catalyst. h With 0.01 mol% catalyst. | ||||
| 1 | Rh2(4S-NOSO)4 | 80 | 96 : 4 |
63 |
| 2 | Rh2(4S-FLSO)4 | 92 | 95 : 5 |
81 |
| 3 | Rh2(4S-TFSO)4 | 90 | 95 : 5 |
49 |
| 4 | Rh2(4S-MESO)4 | 82 | 95 : 5 |
61 |
| 5 | Rh2(4S-TBSO)4 | 90 | 96 : 4 |
71 |
| 6 | Rh2(4S-MOSO)4 | 88 | 94 : 6 |
60 |
| 7 | Rh2(4S-DOSO)4 | 84 | 95 : 5 |
65 |
| 8 | Rh2(4S,5R-MNOSO)4 | 96 | 93 : 7 |
98 |
| 9 | Rh2(4S,5R-MFLSO)4 | 90 | 93 : 7 |
83 |
| 10 | Rh2(4S,5R-MFSO)4 | 85 | 92 : 8 |
94 |
| 11 | Rh2(4S,5R-MMESO)4 | 93 | 93 : 7 |
88 |
| 12 | Rh2(4S,5R-MTBSO)4 | 95 | 94 : 6 |
88 |
| 13 | Rh2(4S,5R-MMOSO)4 | 86 | 93 : 7 |
92 |
| 14 | Rh2(4S,5R-MDOSO)4 | 92 | 95 : 5 |
90 |
| 15 | Rh2(4R-NOST)4 | 91 | 93 : 7 |
40 |
| 16 | Rh2(4R-FLST)4 | 94 | 95 : 5 |
42 |
| 17 | Rh2(4R-TFST)4 | 90 | 94 : 6 |
55 |
| 18 | Rh2(4R-MEST)4 | 90 | 95 : 5 |
47 |
| 19 | Rh2(4R-TBST)4 | 93 | 93 : 7 |
67 |
| 20 | Rh2(4R-MOST)4 | 90 | 94 : 6 |
53 |
| 21 | Rh2(4R-DOST)4 | 93 | 96 : 4 |
64 |
| 22 | Rh2(S-NOSP)4 | 90 | 93 : 7 |
90 |
| 23b | Rh2(4S,5R-MNOSO)4 | 90 | 95 : 5 |
95 |
| 24c | Rh2(4S,5R-MNOSO)4 | 85 | 96 : 4 |
92 |
| 25d | Rh2(4S,5R-MNOSO)4 | 87 | 93 : 7 |
86 |
| 26e | Rh2(4S,5R-MNOSO)4 | 75 | 94 : 6 |
81 |
| 27f | Rh2(4S,5R-MNOSO)4 | 80 | 93 : 7 |
80 |
| 28g | Rh2(4S,5R-MNOSO)4 | 75 | 96 : 4 |
84 |
| 29h | Rh2(4S,5R-MNOSO)4 | 42 | 95 : 5 |
82 |
In general, a higher enantioselectivity was observed in the reactions catalyzed by the oxazolidine-4-carboxylate-derived catalysts (49–81% ee, entries 1–7) than the thiazolidine-4-carboxylate 1,1-dioxide-based catalysts (40–67% ee, entries 15–21). An additional methyl group in the oxazolidine ring has largely enhanced the asymmetric inductions of the corresponding catalysts (83–98% ee, entries 8–14). Among the 21 Rh(II) complexes, dirhodium tetrakis((4S,5R)-5-methyl-3-((4-nitrophenyl)sulfonyl)oxazolidine-4-carboxylate) (Rh2(4S,5R-MNOSO)4) displayed the highest efficiency in terms of yields and enantioselectivities (96% yield and 98% ee, entry 8). Electronic changes on the aryl ring had a minimal effect, considering that the electron-rich 4-methoxyphenyl derivative Rh2(4S,5R-MMOSO)4 also resulted in excellent asymmetric induction (92% ee, entry 13).
The 4-dodecylphenyl catalysts Rh2(4S-DOSO)4, Rh2(4S,5R-MDOSO)4 and Rh2(4R-DOST)4 were prepared due to the possibly good solubility induced by these functionalities. We have tested their solubilities, finding that they can be well dissolved in a hydrocarbon solvent (e.g. toluene and pentane). It is noted that the success of the 4-dodecylphenyl prolinate catalyst Rh2(DOSP)4 was ascribed to its super solubility in the hydrocarbon solvent.7 Our results suggested that under our reaction conditions (in toluene at −40 °C), the 4-dodecylphenyl catalyst Rh2(4S,5R-MDOSO)4 cannot compete with the nitro-functionalized catalyst Rh2(4S,5R-MNOSO)4. Their ligands have the same heterocyclic ring, 5-methyloxazolidine, but they displayed 90 and 98% ee, respectively (entries 14 and 8). The other two 4-dodecylphenyl catalysts Rh2(4S-DOSO)4 and Rh2(4R-DOST) cannot rival Rh2(4S,5R-MNOSO)4, either, and the asymmetric inductions were modest (entries 7 and 21). On the other hand, the enantioselectivities of other nitro-functionalized Rh(II) catalysts Rh2(4S-NOSO)4 and Rh2(4R-NOST)4, whose ligands were composed of oxazolidine and thiazolidine 1,1-dioxide, respectively, were lower than Rh2(4S,5R-MNOSO)4 (entries 1, 8 and 15). For comparison, we have also run the same cycloaddition reaction using the nitro-functionalized Rh(II) prolinate (Rh2(S-NOSP)4, Fig. 1) as the catalyst, resulting in 90% yield and 90% ee (entry 22). We ascribe the success of Rh2(4S,5R-MNOSO)4 to the synergistic effects of the electron-withdrawing O in the oxazolidine ring (electronic effect), the methyl substituent at the 5-position of the oxazolidine ring, which is next to the carboxylate group at the 4-position of the ring (steric effect), and the highly electron-withdrawing nitro substituent attached to the sulfonylphenyl group (electronic effect). Any one of these effects cannot alone elucidate the excellent enantioselectivity achieved in the Rh2(4S,5R-MNOSO)4-catalyzed cyclopropanation reaction.
After it was determined that Rh2(4S,5R-MNOSO)4 was an exceptional catalyst, we studied the effects of the additive methyl benzoate and the temperatures on the catalytic results, finding that the presence of methyl benzoate and low temperature have positive effects on the enantioselectivity of the cyclopropane product (entries 8 and 23–27).8m Decreasing the catalyst loading from 2 to 0.1 mol% lowered the yield and enantioselectivity (75% yield and 84% ee, entry 28). Further decreasing the catalyst loading from 0.1 to 0.01 mol% did not alter the enantioselectivity (82% ee), but the yield was much poorer (42%, entry 29).
The catalytic capabilities of Rh2(4S,5R-MNOSO)4 in intermolecular cyclopropanation reactions were further evaluated with the use of alkenes other than styrene (Table 3). Exceptional stereocontrol (>95
:
5 E/Z) and enantiocontrol (88–93% ee) were achieved with substituted styrenes bearing either an electron-donating group (e.g. –Me and –OMe) or an electron-withdrawing group (e.g. –F and –Br) at the 4-position. The introduction of a 2-methyl group in 2-methyl styrene, and thus making the olefin substrate relatively crowded than styrene, does not largely reduce the enantioselectivity of the cyclopropane product 2b (87% ee). High asymmetric induction was also found in the cyclopropanation of an aliphatic alkene (n-hexene), and the corresponding cyclopropane product 2g was in 92% ee, although the yield is modest (70%). 1,1-Diphenylethene was also effective in Rh2(4S,5R-MNOSO)4-catalyzed cyclopropanation, leading to the formation of the cyclopropane 2h in 94% yield and 96% ee. (Z)-Methyl styrene gave the corresponding cyclopropane 2i in high enantioselectivity (88% ee). However, the reaction with (E)-methyl styrene failed.
| a Reaction conditions: a solution of diazo compound (40 mg, 0.2 mmol, 1.0 eq.) in 1 mL toluene was added slowly to the solution of olefin (1.0 mmol, 5.0 eq.), and 2 mol% Rh2(4S,5R-MNOSO)4 in 1 mL toluene at −40 °C. The resulting solution was vigorously stirred at −40 °C for two days until most diazo compound was completely consumed. |
|---|
|
:
7 E/Z) and enantiocontrol (up to 98% ee) were achieved with various olefins, which differ in steric and electronic factors. The preliminary results are encouraging. Studies are in progress to determine the full potential of these new dirhodium complexes in organic synthesis. In the carbene transfer reactions, an additional methyl group at the 5-position endowed the 5-methyloxazolidine-4-carboxylate complexes with higher asymmetric inductions than the corresponding Rh(II) oxazolidine-4-carboxylate catalysts. We are currently pursuing the modifications of the ligands (e.g. incorporating alkyl groups at the 5-position of the heterocycle ring) and syntheses of the second generation of Rh(II) thiazolidine-4-carboxylates, and the results will be published in due course.
Caution! Although we have not experienced any problem in the handling of diazo compounds, extreme care should be taken when manipulating them due to their explosive nature.
:
PE
:
HOAc = 100
:
50
:
5). 1H NMR (300 MHz, DMSO-d6) δ 8.39 (d, J = 8.5 Hz, 2H), 8.18 (d, J = 8.5 Hz, 2H), 5.18 (d, J = 6.3 Hz, 1H), 4.60 (d, J = 6.3 Hz, 1H), 4.48 (dd, J = 7.9, 5.7 Hz, 1H), 3.94 (t, J = 8.7 Hz, 1H), 3.74 (dd, J = 8.7, 5.7 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 171.02, 150.85, 143.17, 129.86, 125.22, 81.48, 69.81, 59.38. FTIR (KBr, cm−1): 3114 w, 2894 w, 1715 s, 1609 w, 1532 s, 1496 w, 1352 s, 1310 s, 1167 s, 1101 w, 1056 w, 1010 w, 997 w, 927 m, 854 m, 742 m, 688 m, 660 m, 631 m, 574 m. HRMS (ESI) ([M − H]−) Calcd for C10H9N2O7S: 301.0136; found: 301.0137.
:
PE
:
HOAc = 100
:
50
:
5), [α]20D = −135.6 (c 3.62, acetone). 1H NMR (300 MHz, DMSO-d6) δ 8.11–7.91 (m, 2H), 7.48–7.42 (m, 2H), 5.13 (d, J = 6.6 Hz, 1H), 4.54 (d, J = 6.6 Hz, 1H), 4.40 (dd, J = 7.8, 6.0 Hz, 1H), 3.87 (t, J = 8.3 Hz, 1H), 3.70 (dd, J = 8.7, 5.9 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 171.10, 165.52 (JC–F = 249.75 Hz), 134.07, 131.40, 117.36 (JC–F = 21.75 Hz), 81.56, 69.76, 59.41. 19F NMR (282 MHz, DMSO-d6) δ 105.42. FTIR (KBr, cm−1): 3110 w, 2895 m, 1713 s, 1595 s, 1495 s, 1353 m, 1298 s, 1205 s, 1170 s, 1156 s, 1101 m, 1070 m, 1057 m, 999 m, 926 s, 839 s, 686 s, 597 s, 545 s. HRMS (ESI) ([M − H]−) Calcd for C10H9FNO5S: 274.0191; found: 274.0199.
:
PE
:
HOAc = 20
:
10
:
1). [α]20D = −122.7 (c 5.76, acetone). 1H NMR (300 MHz, DMSO-d6) δ 8.14 (d, J = 8.1 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 5.17 (d, J = 6.3 Hz, 1H), 4.57 (d, J = 6.3 Hz, 1H), 4.45 (dd, J = 7.8, 6.0 Hz, 1H), 3.93 (t, J = 8.4 Hz, 1H), 3.73 (dd, J = 8.7, 6.0 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ 170.67, 141.10, 133.27 (JC–F = 33.0 Hz), 132.79, 128.81, 123.45 (JC–F = 272.0 Hz), 80.87, 69.09, 58.74. 19F NMR (282 MHz, DMSO-d6) δ −62.43. FTIR (KBr, cm−1): 3400 br, 2896 w, 1714 s, 1433 w, 1406 w, 1354 s, 1329 s, 1298 w, 1257 w, 1170 s, 1111 m, 1064 m, 999 w, 927 m, 842 m, 717 m, 657 w, 630 w, 599 w, 570 w. HRMS (ESI) ([M − H]−) Calcd for C11H9F3NO5S: 324.0159; found: 324.0155.
:
PE
:
HOAc = 100
:
100
:
5), [α]20D = −168.2 (c 4.30, acetone). 1H NMR (300 MHz, CDCl3) δ 7.76 (d, J = 8.2 Hz, 2H), 7.40–7.30 (m, 2H), 5.18 (d, J = 6.0 Hz, 1H), 4.72 (d, J = 6.0 Hz, 1H), 4.38 (t, J = 6.8 Hz, 1H), 3.95 (m, 2H), 2.46 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 173.44, 145.17, 134.09, 130.38, 128.03, 81.96, 69.74, 59.14, 22.09. FTIR (KBr, cm−1): 3433 br, 2895 w, 1713 s, 1599 w, 1433 w, 1351 s, 1309 w, 1294 w, 1256 w, 1166 s, 1108 w, 1170 w, 997 w, 926 w, 885 w, 814 w, 712 w, 683 m, 579 m, 554 m, 465 w. HRMS (ESI) ([M − H]−) Calcd for C11H12NO5S: 270.0442; found: 270.0440.
:
PE
:
HOAc = 100
:
100
:
2), [α]20D = −158.5 (c 4.48, acetone). 1H NMR (300 MHz, DMSO-d6) δ 7.81 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 5.10 (d, J = 6.3 Hz, 1H), 4.54 (d, J = 6.3 Hz, 1H), 4.36 (dd, J = 8.4, 6.0 Hz, 1H), 3.85 (t, J = 8.4 Hz, 1H), 3.70 (dd, J = 8.4, 6.0 Hz, 1H), 1.31 (s, 9H). 13C NMR (75 MHz, DMSO-d6) δ 171.40, 157.43, 135.00, 128.35, 127.13, 81.74, 69.81, 59.70, 35.87, 31.69. FTIR (KBr, cm−1): 3416 w, 2897 m, 1713 s, 1597 s, 1598 w, 1497 m, 1467 w, 1443 w, 1348 s, 1307 m, 1257 s, 1157 s, 1114 m, 1069 w, 1026 w, 998 w, 926 m, 834 m, 685 m, 598 s, 554 s. HRMS (ESI) ([M − H]−) Calcd for C14H18NO5S: 312.0911; found: 312.0911.
:
petroleum ester
:
HOAc = 4
:
4
:
1), [α]20D = −153.0 (c 7.36, acetone). 1H NMR (300 MHz, DMSO-d6) δ 7.82 (d, J = 9.0 Hz, 2H), 7.11 (d, J = 9.0 Hz, 2H), 5.09 (d, J = 6.6 Hz, 1H), 4.52 (d, J = 6.6 Hz, 1H), 4.33 (dd, J = 7.2, 6.0 Hz, 1H), 3.84 (s, 3H), 3.82 (t, J = 7.8 Hz, 1H), 3.68 (dd, J = 8.7, 6.0 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 171.33, 163.71, 130.53, 129.10, 115.31, 81.59, 69.56, 59.56, 56.47. FTIR (KBr, cm−1): 2988 m, 1713 s, 1597 s, 1580 m, 1498 m, 1464 w, 1442 w, 1348 s, 1306 m, 1257 s, 1156 s, 1113 m, 1069 w, 1026 w, 998 w, 926 m, 834 m, 685 m, 598 s, 554 s. HRMS (ESI) ([M − H]−) Calcd for C11H14NO7S: 286.0380; found: 286.0354.
:
PE
:
HOAc = 7.5
:
30
:
1), [α]20D = −151.1° (c 13.44, acetone). 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 7.8 Hz, 2H), 7.31 (m, 2H), 5.16 (d, J = 5.6 Hz, 1H), 4.70 (d, J = 5.6 Hz, 1H), 4.42 (m, 2H), 2.57 (m, 1H), 1.60 (m, 4H), 1.12 (m, 15H), 0.81 (m, 5H). FTIR (KBr, cm−1): 3567 br, 2958 m, 2928 s, 2871 w, 2856 m, 1719 s, 1598 s, 1466 m, 1413 w, 1352 s, 1298 w, 1166 s, 1108 m, 1069 w, 996 w, 929 s, 678 s, 605 s, 572 w. HRMS (ESI) ([M − H]−) Calcd for C23H37NO5S: 438.2320; found: 438.2320.
:
PE
:
HOAc = 20
:
20
:
1). [α]20D = −153.4 (c 7.08, acetone). 1H NMR (400 MHz, acetone-d6) δ 8.50 (m, 2H), 8.28 (m, 2H), 5.35 (d, J = 6.8 Hz, 1H), 4.71 (d, J = 6.8 Hz, 1H), 4.11 (m, 1H), 3.94 (d, J = 7.1 Hz, 1H), 1.16 (d, J = 6.1 Hz, 3H). 13C NMR (100 MHz, acetone-d6) δ 170.40, 151.71, 144.45, 130.42, 125.47, 81.80, 79.94, 66.04, 18.84. FTIR (KBr, cm−1): 3435 br, 3114 w, 1713 m, 1610 w, 1531 s, 1351 s, 1309 w, 1167 s, 1069 w, 927 w, 854 w, 741 m, 574 w, 468 w. HRMS (ESI) ([M − H]−) Calcd for C11H12N2O7S: 315.0292; found: 315.0288.
:
PE
:
HOAc = 20
:
20
:
1), [α]20D = −132.6 (c 8.90, acetone). 1H NMR (400 MHz, DMSO-d6) δ 8.01 (m, 2H), 7.45 (m, 2H), 5.24 (d, J = 7.1 Hz, 1H), 4.57 (d, J = 7.1 Hz, 1H), 3.97 (m, 1H), 3.72 (d, J = 7.0 Hz, 1H), 0.98 (d, J = 6.1 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 170.42, 165.07 (d, JC–F = 252.8 Hz), 133.37 (d, J = 3.0 Hz), 131.08 (d, J = 9.7 Hz), 116.74 (d, J = 22.7 Hz), 80.60, 78.14, 65.02, 18.37. 19F NMR (282 MHz, DMSO-d6) δ −109.14. FTIR (KBr, cm−1): 3420 br, 2980 w, 1737 s, 1494 s, 1295 m, 1352 s, 1238 m, 1170 s, 1156 s, 1089 m, 1075 w, 980 m, 842 s, 680 m, 591 s, 547 s. HRMS (ESI) ([M − H]−) Calcd for C11H12FNO5S: 288.0347; found: 288.0349.
:
PE
:
HOAc = 20
:
20
:
1). [α]20D = −132.3 (c 11.78, acetone). 1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 8.2 Hz, 2H), 5.26 (d, J = 6.5 Hz, 1H), 4.70 (d, J = 6.5 Hz, 1H), 4.12 (m, 1H), 3.84 (d, J = 7.0 Hz, 1H), 1.22 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 173.85, 141.31, 135.53 (q, JC–F = 33.0 Hz), 128.58, 126.74 (q, J = 3.6 Hz), 123.28 (d, J = 273.1 Hz), 81.38, 79.31, 65.22, 18.61. 19F NMR (377 MHz, CDCl3) δ −63.21. FTIR (KBr, cm−1): 3400 br, 2987 w, 1715 s, 1405 w, 1390 m, 1324 s, 1296 w, 1259 w, 1227 w, 1185 s, 1133 s, 1107 m, 1062 m, 1015 w, 983 m, 889 w, 838 m, 717 s, 649 w, 617 s, 568 m, 428 m. HRMS (ESI) ([M − H]−) Calcd for C12H12F3NO5S: 338.0316; found: 338.0311.
:
PE
:
HOAc = 20
:
20
:
1), [α]20D = −159.7 (c 9.00, acetone). 1H NMR (400 MHz, CDCl3) δ 7.75 (m, 2H), 7.34 (m, 2H), 5.23 (d, J = 6.7 Hz, 1H), 4.67 (d, J = 6.7 Hz, 1H), 4.09 (m, 1H), 3.76 (d, J = 7.1 Hz, 1H), 2.43 (s, 1H), 1.15 (d, J = 6.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 173.84, 145.05, 134.04, 130.22, 128.13, 81.44, 79.02, 65.31, 21.78, 18.55. FTIR (KBr, cm−1): 3380 br, 2885 w, 1737 s, 1598 w, 1348 s, 1278 w, 1161 s, 1089 s, 1071 w, 972 m, 818 w, 705 m, 665 s, 595 s, 546 s. HRMS (ESI) ([M − H]−) Calcd for C12H15NO5S: 284.0598; found: 284.0597.
:
PE
:
HOAc = 20
:
20
:
1), [α]20D = −122.6 (c 8.60, acetone). 1H NMR (400 MHz, CDCl3) δ 7.78 (m, 2H), 7.54 (m, 2H), 5.25 (d, J = 6.6 Hz, 1H), 5.25 (d, J = 6.6 Hz, 1H), 4.67 (d, J = 6.7 Hz, 1H), 4.08 (m, 1H), 3.77 (d, J = 7.0 Hz, 1H), 1.32 (s, 9H), 1.11 (d, J = 6.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 173.74, 158.01, 134.07, 128.05, 126.56, 81.52, 79.00, 65.25, 35.40, 31.20, 18.51. FTIR (KBr, cm−1): 3480 br, 2966 s, 1737 s, 1595 m, 1461 w, 1400 m, 1349 s, 1268 w, 1164 s, 1113 m, 1086 m, 1039 w, 980 m, 891 w, 844 m, 754 m, 637 s, 591 s, 554 w. HRMS (ESI) ([M − H]−) Calcd for C15H21NO5S: 326.1068; found: 326.1058.
:
PE
:
HOAc = 20
:
20
:
1), [α]20D = −179.5 (c 7.80, acetone). 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.9 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 5.17 (d, J = 6.8 Hz, 1H), 4.64 (d, J = 6.8 Hz, 1H), 4.04 (m, 1H), 3.82 (s, 3H), 3.71 (d, J = 7.1 Hz, 1H), 1.10 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 172.86, 163.89, 130.25, 128.26, 114.73, 81.35, 78.91, 65.32, 55.85, 18.53. FTIR (KBr, cm−1): 3500 w, 2880 w, 1738 s, 1596 s, 1577 w, 1499 s, 1460 w, 1443 w, 1348 s, 1309 w, 1264 s, 1157 s, 1092 m, 1074 w, 1022 w, 980 w, 892 w, 836 m, 802 w, 673 s, 593 s, 557 s. HRMS (ESI) ([M − H]−) Calcd for C12H15NO6S: 300.0547; found: 300.0538.
:
PE
:
HOAc = 7.5
:
30
:
1), [α]20D = −151.1° (c 13.44, acetone). 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.2 Hz, 2H), 7.32 (m, 2H), 5.28 (d, J = 6.9 Hz, 1H), 4.69 (d, J = 6.9 Hz, 1H), 4.09 (m, 1H), 3.74 (m, 1H), 2.59 (m, 1H), 1.60 (m, 4H), 1.12 (m, 18H), 0.81 (m, 5H). FTIR (KBr, cm−1): 3560 br, 2958 m, 2927 s, 2871 w, 2855 m, 1738 s, 1597 m, 1411 m, 1352 s, 1165 s, 1074 w, 982 w, 834 w, 655 w, 601 m, 575 w. HRMS (ESI) ([M − H]−) Calcd for C23H37NO5S: 438.2320; found: 438.2320.
:
EtOAc
:
acetic acid = 30
:
20
:
2). 1H NMR (300 MHz, CDCl3) δ 8.39 (d, J = 9.0 Hz, 2H), 8.08 (d, J = 9.0 Hz, 2H), 4.97 (dd, J = 6.9, 3.6 Hz, 1H), 4.74 (d, J = 9.0 Hz, 1H), 4.41 (d, J = 9.0 Hz, 3.0 Hz, 1H), 3.32 (dd, J = 11.1, 3.6 Hz), 3.20 (dd, J = 11.1, 6.9 Hz, 1H).
:
EtOAc
:
acetic acid = 30
:
20
:
2). 1H NMR (300 MHz, acetone-d6) δ 7.85 (m, 2H), 7.17 (m, 2H), 4.84 (dd, J = 7.2, 3.4 Hz, 1H), 4.63 (d, J = 9.3 Hz, 1H), 4.35 (d, J = 9.3 Hz, 1H), 3.21 (dd, J = 11.5, 3.4 Hz, 1H), 3.01 (dd, J = 11.5, 7.2 Hz, 1H). 19F NMR, (282 MHz, acetone-d6) δ −103.98.
:
EtOAc
:
acetic acid = 10
:
10
:
1). 1H NMR (300 MHz, CDCl3) δ 8.02 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.1 Hz, 2H), 4.96 (dd, J = 6.9, 3.3 Hz, 1H); 4.71 (d, J = 9.0 Hz, 1H), 4.42 (d, J = 9.0 Hz, 1H), 3.3 (dd, J = 11.4, 3.6 Hz, 1H), 3.15 (dd, J = 11.4, 6.9 Hz, 1H). 19F NMR (282 MHz, CDCl3) δ −63.92.
:
EtOAc
:
acetic acid = 30
:
20
:
2). 1H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 4.86 (dd, J = 7.2, 3.6 Hz, 1H), 4.67 (d, J = 9.3 Hz, 1H), 4.44 (d, J = 9.3 Hz, 1H), 3.25 (dd, J = 11.4, 3.6 Hz, 1H), 2.96 (dd, J = 11.4, 7.2 Hz, 1H), 2.45 (s, 3H).
:
EtOAc
:
acetic acid = 30
:
20
:
2). 1H NMR (300 MHz, CDCl3) δ 7.79 (d, J = 6.6 Hz, 2H), 7.55 (d, J = 6.6 Hz, 2H), 4.88 (dd, J = 7.2, 5.4 Hz, 1H), 4.65 (d, J = 9.3 Hz, 1H), 4.45 (d, J = 9.3 Hz, 1H), 3.28 (dd, J = 11.4, 5.4 Hz, 1H), 2.98 (dd, J = 11.4, 7.2 Hz, 1H), 1.36 (s, 9H).
:
EtOAc
:
acetic acid = 30
:
20
:
2). 1H NMR (300 MHz, DMSO-d6) δ 7.83 (d, J = 6.9 Hz, 2H), 7.10 (d, J = 6.9 Hz, 2H), 4.81 (dd, J = 7.3, 3.6 Hz, 1H), 4.68 (d, J = 10.3 Hz, 1H), 4.32 (d, J = 10.3 Hz, 1H), 3.83 (s, 3H), 3.07 (dd, J = 11.4, 3.6 Hz, 1H), 2.78 (dd, J = 11.4, 7.3 Hz, 1H).
:
EtOAc
:
acetic acid = 20
:
10
:
1). 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.90 (d, J = 4.1 Hz, 1H), 4.66 (d, J = 9.6 Hz, 1H), 4.44 (d, J = 9.6 Hz, 1H), 3.20 (d, J = 10.8 Hz, 1H), 2.87 (d, J = 4.1 Hz, 1H), 2.56 (m, 1H), 1.55 (m, 4H), 1.09 (m, 15H), 0.79 (m, 5H). FTIR (KBr, cm−1): 3513 br, 2956 m, 2926 s, 2855 m, 1731 s, 1596 m, 1458 m, 1411 w, 1351 s, 1227 w, 1165 s, 1091 w, 1009 w, 828 w, 648 w, 632 w, 595 s.
:
EtOAc
:
formic acid = 30
:
20
:
2). [α]15D = −62.2° (c 1.96, acetone). 1H NMR (300 MHz, acetone-d6): δ 8.45 (d, J = 9.0 Hz, 2H), 8.25 (d, J = 9.0 Hz, 2H), 5.39 (dd, J = 9.1, 4.1 Hz, 1H), 4.90 (d, J = 11.8 Hz, 1H), 4.37 (d, J = 11.8 Hz, 1H), 3.73 (dd, J = 13.5, 9.1 Hz, 1H), 3.63 (dd, J = 13.5, 4.1 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 168.97, 150.13, 143.01, 129.14, 124.62, 62.35, 56.91, 51.28. FTIR (KBr, cm−1): 3592 s, 3522 s, 3073 w, 3017 w, 2964 w, 2852 w, 2769 w, 2698 w, 2548 w, 1739 s, 1608 s, 1530 s, 1355 s, 1332 s, 1224 m, 1161 s, 1124 s, 1090 s, 1043 s, 967 w, 921 w, 858 w, 769 s, 682 m, 468 m, 430 m. HRMS (ESI) ([M − H]−) Calcd for C10H9N2O8S2: 348.9806; found: 348.9784.
:
EtOAc
:
formic acid = 30
:
20
:
2). [α]15D = −58.8° (c 10.18, acetone). 1H NMR (300 MHz, acetone-d6) δ 8.05 (m, 2H), 7.39 (m, 2H), 5.28 (dd, J = 8.4, 4.5 Hz, 1H), 4.81 (d, J = 12.0 Hz, 1H), 4.32 (d, J = 12 Hz, 1H), 3.60 (m, 2H). 13C NMR (100 MHz, DMSO-d6) δ 169.80, 165.52 (JC–F = 251.0 Hz) 134.54, 131.25, 117.07 (JC–F = 23.0 Hz), 62.82, 57.43, 50.75, 31.09. 19F NMR (377 MHz, acetone-d6) δ −106.06. FTIR (KBr, cm−1): 3554 br, 3109 s, 3023 s, 2955 s, 2601 w, 1732 s, 1625 m, 1591 s, 1494 s, 1408 s, 1333 s, 1297 s, 1232 s, 1157 s, 1089 s, 1041 m, 997 m, 915 m, 841 s, 820 s, 758 s, 727 w, 577 s, 545 s, 440 m. HRMS (ESI) ([M − H]−) Calcd for C10H9FNO6S2: 321.9861; found: 321.9841.
:
EtOAc
:
acetic acid = 30
:
20
:
2). [α]15D = −67.7° (c 8.98, acetone). 1H NMR (300 MHz, DMSO-d6) δ 8.13 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.4 Hz, 2H), 5.14 (dd, J = 9.0 Hz, 4.5 Hz, 1H), 4.96 (d, J = 12.0 Hz, 1H), 4.30 (d, J = 12.0 Hz 1H), 3.68 (dd, J = 13.8, 9.0 Hz, 1H), 3.56 (dd, J = 13.8, 4.5 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 169.32, 141.50, 133.12 (JC–F = 24.8 Hz), 126.37, 126.39, 123.26 (JC–F = 270.8 Hz), 62.40, 57.11, 51.33. 19F NMR (377 MHz, acetone-d6) δ −63.66. FTIR (KBr, cm−1): 3212 w, 2959 w, 1735 m, 1407 w, 1368 m, 1324 s, 1268 w, 1170 s, 1134 s, 1092 w, 1062 m, 1015 m, 996 w, 840 m, 756 m, 711 m, 613 s, 555 w, 431 w. HRMS (ESI) ([M − H]−) Calcd for C11H9F3NO6S2: 371.98296; found: 371.9829.
:
EtOAc
:
acetic acid = 30
:
20
:
2). [α]15D = −47.2° (c 10.07, acetone). 1H NMR (300 MHz, acetone-d6) δ 7.84 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 5.25 (t, J = 6.4 Hz, 1H), 4.77 (d, J = 11.9 Hz, 1H), 4.30 (d, J = 11.9 Hz, 1H), 3.55 (d, J = 6.4 Hz, 2H), 2.44 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 169.21, 144.31, 134.67, 129.31, 127.45, 62.89, 57.13, 51.61, 21.18. FTIR (KBr, cm−1): 3219 s, 3025 w, 2972 w, 1760 s, 1434 w, 1332 s, 1286 w, 1269 w, 1229 w, 1190 s, 1113 m, 1088 m, 1056 w, 812 m, 762 s, 663 s, 578 s, 546 s, 466 m. HRMS (ESI) ([M − H]−) Calcd for C11H12NO6S2: 318.0112; found: 318.0100.
:
EtOAc
:
acetic acid = 30
:
20
:
2). [α]15D = −69.9° (c 8.97, acetone). 1H NMR (300 MHz, DMSO-d6) δ 7.82 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 5.07 (dd, J = 8.4, 4.8 Hz, 1H), 4.82 (d, J = 12.1 Hz, 1H), 4.24 (d, J = 12.1 Hz, 1H), 3.57 (dd, J = 13.8 Hz, 8.4 Hz, 1H), 3.53 (dd, J = 13.8 Hz, 4.8 Hz, 1H), 1.30 (s, 9H). 13C NMR (75 MHz, DMSO-d6) δ 169.22, 156.75, 134.84, 127.29, 126.13, 62.72, 57.11, 51.21, 35.02, 30.80. FTIR (KBr, cm−1): 3435 br, 2961 s, 1747 w, 1627 w, 1596 w, 1403 w, 1339 m, 1162 s, 1110 s, 806 w, 765 m, 631 m, 583 w, 553 w, 467 m. HRMS (ESI) ([M − H]−) Calcd for C14H18NO6S2: 360.0581; found: 360.0576.
:
EtOAc
:
acetic acid = 30
:
20
:
2). [α]15D = −66.6° (c 10.11, acetone). 1H NMR (400 MHz, DMSO-d6) δ 7.87 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 5.07 (t, J = 5.1 Hz, 1H), 4.83 (d, J = 12.3 Hz, 1H), 4.26 (d, J = 12.3 Hz, 1H), 3.87 (s, 3H), 3.57 (d, J = 5.1 Hz, 2H). 13C NMR (100 MHz, DMSO-d6) δ 169.89, 163.75, 130.37, 129.39, 115.07, 63.30, 56.26, 51.96. FTIR (KBr, cm−1): 3207 br s, 3000 s, 2942 s, 1770 m, 1596 s, 1579 s, 1500 s, 1446 m, 1264 m, 1171 s, 1105 s, 1046 s, 1019 s, 995 m, 884 m, 806 s, 779 s, 733 s, 668 s, 579 s, 553 s, 445 s. HRMS (ESI) ([M − H]−) Calcd for C11H12NO7S2: 334.0061; found: 334.0035.
:
EtOAc
:
acetic acid = 20
:
10
:
1). [α]25D = −61.3° (c 39.20, acetone). 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.2 Hz, 2H), 7.34 (m, 2H), 5.15 (dd, J = 8.7, 3.4 Hz, 1H), 4.60 (d, J = 11.8 Hz, 1H), 4.41 (d, J = 11.8 Hz, 1H), 3.62 (dd, J = 8.7, 4.7 Hz, 1H), 3.31 (m, 1H), 2.62 (m, 1H), 1.65 (m, 4H), 1.17 (m, 15H), 0.86 (m, 5H). FTIR (KBr, cm−1): 3552 br, 2958 m, 2927 s, 2855 m, 1741 s, 1597 w, 1462 w, 1412 w, 1336 s, 1226 w, 1164 s, 1040 w, 919 w, 830 w, 770 w, 650 w, 593 s. HRMS (ESI) ([M − H]−) Calcd for C22H35NO6S2: 472.1833; found: 472.1825.
:
PE = 1
:
1). 1H NMR (300 MHz, acetone-d6) δ 8.42 (J = 8.7 Hz, 2H), 8.14 (d, J = 8.7 Hz, 2H), 5.10 (d, J = 5.6 Hz, 1H), 4.52 (d, J = 5.6 Hz, 1H), 4.38 (dd, J = 7.5, 6.0 Hz, 1H), 4.02 (dd, J = 8.7, 7.5 Hz, 1H), 3.57 (dd, J = 8.7, 6.0 Hz, 1H). 13C NMR (100 MHz, acetone-d6) δ 188.89, 150.55, 143.94, 129.19, 124.46, 80.88, 70.30, 59.52. Anal. Calcd for C44H46N8O31Rh2S4 (Rh2(NOSO)4·H2O·EtOAc): C, 34.83%; H, 3.06%; N, 7.39%; S, 8.45%; found: C, 34.49%; H, 3.108%; N, 7.34%; S, 8.26%. FTIR (KBr, cm−1): 3451 br, 3106 w, 2888 w, 1612 s, 1531 s, 1477 w, 1419 s, 1352 s, 1312 m, 1225 w, 1169 s, 1090 m, 1068 m, 1011 m, 937 m, 857 m, 739 s, 685 m, 626 s, 578 m, 455 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 593.5, 312.1; 447.5, 147.4
:
PE = 1
:
1). 1H NMR (300 MHz, CDCl3) δ 7.83 (dd, J = 8.6, 5.0 Hz, 2H), 7.18 (t, J = 8.4 Hz, 2H), 5.00 (d, J = 5.4 Hz, 1H), 4.67 (d, J = 5.4 Hz, 1H), 4.12 (m, 1H), 3.93 (t, J = 8.4 Hz, 1H), 3.71 (m, 1H). 13C NMR (100 MHz, acetone-d6) δ 188.94, 165.40 (JC–F = 251.0 Hz), 134.55, 130.73, 116.41 (JC–F = 23.0 Hz), 80.98, 70.02, 59.62. 19F NMR (282 MHz, CDCl3) δ −104.07. Anal. Calcd for C40H38F4N4O21Rh2S4 (Rh2(FLSO)4·H2O): C, 36.38%; H, 2.90%; N, 4.24%; S, 9.71%; found: C, 36.36%; H, 3.10%; N, 4.31%; S, 9.22%. FTIR (KBr, cm−1): 3473 br, 3107 w, 3074 w, 2888 w, 1612 s, 1592 s, 1494 s, 1526 s, 1420 s, 1355 w, 1239 m, 1171 s, 1155 s, 1090 w, 1068 m, 1011 m, 935 m, 841 s, 764 w, 739 w, 677 s, 598 s, 548 s, 483 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 597.5, 322.1; 449.5, 145.3.
:
PE = 1
:
1). 1H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 5.00 (d, J = 5.7 Hz, 1H), 4.70 (d, J = 5.2 Hz, 1H), 4.15 (m, 1H), 3.96 (t, J = 8.0 Hz, 1H), 3.75 (m, 1H). 13C NMR (100 MHz, acetone-d6) δ 188.86, 142.36, 133.93 (JC–F = 33.0 Hz), 128.60, 126.50 (JC–F = 4.0 Hz), 123.61 (JC–F = 270.0 Hz), 80.96, 70.12, 59.55. 19F NMR (282 MHz, CDCl3) δ −63.98. Anal. Calcd for C44H40F12N4O22Rh2S4 (Rh2(TFSO)4·2H2O): C, 34.34%; H, 2.62%; N, 3.64%; S, 8.33%; found: C, 34.33%; H, 2.54%; N, 3.69%; S, 8.33%. FTIR (KBr, cm−1): 3466 br, 2893 w, 1613 m 1421 versus 1407 m, 1359 m, 1324 s, 1172 s, 1133 s, 1109 w, 1063 s, 1015 m, 936 s, 714 m, 625 m, 601 w, 429 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 594.5, 308.8; 447.5, 138.3.
:
PE = 2
:
1). 1H NMR (300 MHz, CDCl3) δ 7.68 (d, J = 6.6 Hz, 2H), 7.28 (d, J = 6.6 Hz, 2H), 4.99 (d, J = 5.5 Hz, 0H), 4.64 (d, J = 5.7 Hz, 1H), 4.13 (t, J = 7.2 Hz, 1H), 3.85 (t, J = 8.1 Hz, 1H), 3.68 (t, J = 6.9 Hz, 1H), 2.39 (s, 3H). 13C NMR (100 MHz, acetone-d6) δ 188.94, 144.14, 135.20, 129.81, 127.74, 81.06, 69.91, 59.68, 20.56. Anal. Calcd for C50H61N4O23.5Rh2S4 (Rh2(MESO)4·0.5H2O·1.5EtOAc): C, 42.05%; H, 4.365%; N, 4.59%; S, 8.332%; found: C, 42.05%; H, 4.31%; N, 3.92%; S, 8.98%. FTIR (KBr, cm−1): 3434 br, 2955 m, 2924 s, 2853 m, 1736 w, 1735 w, 1705 w, 1612 s, 1420 s, 1353 s, 1220 w, 1164 s, 1091 m, 1068 m, 1001 m, 934 m, 815 m, 764 w, 739 w, 705 w, 669 s, 598 s, 548 m, 470 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 594.5, 273.8; 446.5, 128.7.
:
PE = 1
:
1) . 1H NMR (300 MHz, CDCl3) δ 7.70 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 4.99 (d, J = 5.5 Hz, 1H), 4.64 (d, J = 5.5 Hz, 1H), 4.12 (t, J = 7.0 Hz, 1H), 3.86 (t, J = 8.0 Hz, 1H), 3.71 (dd, d, J = 8.4, 6.6 Hz, 1H), 1.32 (s, 9H). 13C NMR (100 MHz, acetone-d6) δ 188.96, 156.87, 135.21, 127.65, 126.24, 81.10, 69.91, 59.70, 34.85, 30.39. Anal. Calcd for C56H76N4O22Rh2S4 (Rh2(TBSO)4·2H2O): C, 45.10%; H, 5.14%; N, 3.76%; S, 8.60%; found: C, 44.78%; H, 5.38%; N, 3.72%; S, 8.30%. FTIR (KBr, cm−1): 3486 br, 3068 w, 2964 s, 2905 w, 2872 w, 1802 w, 1611 s, 1465 w, 1419 s, 1352 s, 1269 m, 1269 m, 1198 s, 1167 m, 1085 m, 1069 m, 1011 m, 935 m, 841 m, 753 m, 641 s, 593 s, 544 m, 486 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 594.5, 303.7; 446.5, 144.0.
:
PE = 3
:
1). 1H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 5.02 (d, J = 5.6 Hz, 1H), 4.63 (d, J = 5.6 Hz, 1H), 4.14 (dd, J = 11.1, 7.2 Hz, 1H), 3.89 (dd, J = 11.1, 9.0 Hz, 1H), 3.83 (s, 3H), 3.72 (dd, J = 9.0, 7.2 Hz, 1H). 13C NMR (100 MHz, acetone-d6) δ 189.01, 163.51, 129.93, 129.67, 114.39, 81.05, 69.88, 59.72, 55.27. Anal. Calcd for C48H63N4O29.5Rh2S4 (Rh2(MOSO)4·3.5H2O·EtOAc): C, 38.38%; H, 4.23%; N, 3.73%; S, 8.54%; found: C, 38.14%; H, 3.95%; N, 4.20%; S, 8.55%. FTIR (KBr, cm−1): 3537 br, 2916 w, 1596 s, 1499 m, 1418 s, 1350 m, 1308 m, 1263 m, 1156 s, 1133 w, 1092 w, 1067 w, 1020 w, 933 w, 836 w, 677 m, 560 s, 578 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 594.5, 275.4; 449.5, 137.3.
:
PE = 1
:
3), [α]20D = −237.6° (c 1.01, acetone). 1H NMR (400 MHz, CDCl3) δ 7.73 (m, 2H), 7.28 (m, 2H), 5.05 (d, J = 5.0 Hz, 1H), 4.72 (d, J = 5.0 Hz, 1H), 4.21 (m, 1H), 3.85 (m, 2H), 2.64 (m, 1H), 1.60 (m, 4H), 1.15 (m, 15H), 0.85 (m, 5H). Anal. Calcd for C88H136F12N4O20Rh2S4 (Rh2(4S-DOSO)4): C, 55.51%; H, 7.20%; N, 2.94%; S, 6.74%; found: C, 54.93%; H, 7.41%; N, 2.81%; S, 6.62%. FTIR (KBr, cm−1): 3448 br, 2958 m, 2927 s, 2871 w, 2855 m, 1610 s, 1421 s, 1354 s, 1166 s, 1092 w, 1070 w, 936 m, 765 w, 657 w, 606 m, 577 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 596.0, 301.6; 448.0, 144.0.
:
PE = 1
:
1). 1H NMR (400 MHz, acetone-d6) δ 8.44 (m, 2H), 8.44 (m, 2H), 5.16 (d, J = 6.0 Hz, 1H), 4.48 (d, J = 6.0 Hz, 1H), 3.82 (m, 1H), 3.75 (d, J = 7.4 Hz, 1H), 1.09 (d, J = 5.9 Hz, 3H). 13C NMR (100 MHz, acetone-d6) δ 189.51, 151.56, 145.00, 130.20, 125.44, 81.43, 80.38, 67.08, 18.59. Anal. Calcd for C45H48N8O29.5Rh2S4 (Rh2(4S,5R-MNOSO)4·H2O·0.25EtOAc): C, 35.87%; H, 3.21%; N, 7.44%; S, 8.51%; found: C, 35.58%; H, 3.37%; N, 7.37%; S, 8.10%. FTIR (KBr, cm−1): 3453 br, 3106 w, 1613 s, 1532 s, 1417 m, 1351 s, 1311 w, 1163 s, 1068 w, 856 w, 738 s, 685 m, 625 s, 579 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 596.0, 353.3; 449.0, 171.4.
:
PE = 1
:
1). 1H NMR (400 MHz, acetone-d6) δ 7.92 (m, 2H), 7.37 (m, 2H), 5.12 (d, J = 6.3 Hz, 1H), 4.49 (d, J = 6.3 Hz, 1H), 3.79 (m, 1H), 3.58 (d, J = 7.4 Hz, 1H), 1.01 (d, J = 6.0 Hz, 3H). 13C NMR (100 MHz, acetone-d6) δ 189.61, 166.35 (d, JC–F = 253.0 Hz), 135.55 (d, JC–F = 3.1 Hz), 131.78 (d, JC–F = 9.6 Hz), 117.32 (d, JC–F = 22.8 Hz), 81.58, 80.17, 67.18, 18.68. 19F NMR (377 MHz, acetone-d6) δ −103.85. Anal. Calcd for C48H56F4N4O24Rh2S4 (Rh2(4S,5R-MFLSO)4·2H2O·EtOAc): C, 38.87%; H, 3.81%; N, 3.78%; S, 8.65%; found: C, 38.76%; H, 3.70%; N, 4.21%; S, 8.16%. FTIR (KBr, cm−1): 3448 br, 2979 w, 1612 s, 1592 m, 1493 m, 1417 s, 1352 s, 1295 w, 1240 m, 1169 m, 1155 s, 1090 m, 869 m, 771 m, 709 w, 677 m, 598 s, 548 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 591.5, 243.4; 449.5, 122.1.
:
PE = 1
:
1). 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 5.10 (d, J = 6.2 Hz, 1H), 4.76 (d, J = 6.2 Hz, 1H), 3.99 (m, 1H), 3.65 (d, J = 7.3 Hz, 1H), 1.02 (d, J = 5.9 Hz, 3H).13C NMR (101 MHz, CDCl3) δ 189.26, 140.83, 135.31 (q, JC–F = 33.0 Hz), 126.70 (d, JC–F = 3.2 Hz), 123.24 (d, JC–F = 273.0 Hz), 81.26, 79.65, 76.91, 66.29, 18.26. 19F NMR (377 MHz, CDCl3) δ −63.21. Anal. Calcd for C50H52F12N4O23Rh2S4 (Rh2(4S,5R-MFLSO)4·2H2O·0.5EtOAc): C, 36.64%; H, 3.20%; N, 3.42%; S, 7.83%; found: C, 36.60%; H, 3.41%; N, 3.34%; S, 7.37%. FTIR (KBr, cm−1): 3462 br, 2981 w, 1614 s, 1418 m, 1406 w, 1324 s, 1253 w, 1167 s, 1134 s, 1063 m, 1016 w, 901 w, 844 m, 771 m, 714 m, 624 s, 601 w, 428 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 595.5, 320.4; 448.5, 157.9.
:
PE = 1
:
1). 1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 7.9 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 5.06 (d, J = 5.9 Hz, 1H), 4.65 (d, J = 5.9 Hz, 1H), 4.04–3.83 (m, 1H), 3.62 (d, J = 7.3 Hz, 1H), 2.38 (s, 3H), 1.02 (d, J = 5.7 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 189.52, 144.44, 134.63, 130.07, 128.09, 81.22, 79.43, 66.40, 21.74, 18.30. Anal. Calcd for C50H66N4O24Rh2S4 (Rh2(4S,5R-MMESO)4·3H2O·0.5EtOAc): C, 41.67%; H, 4.62%; N, 3.89%; S, 8.90%; found: C, 41.62%; H, 4.52%; N, 3.78%; S, 8.43%. FTIR (KBr, cm−1): 3448 br, 2879 w, 1612 s, 1418 s, 1350 s, 1251 w, 1161 s, 1090 m, 815 w, 771 m, 705 s, 599 s, 550 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 597.0, 336.6; 448.0, 180.5.
:
PE = 1
:
1). 1H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 5.09 (d, J = 5.7 Hz, 1H), 4.65 (d, J = 5.7 Hz, 1H), 3.97 (m, 1H), 3.62 (d, J = 7.1 Hz, 1H), 1.26 (s, 9H), 0.97 (d, J = 5.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 189.45, 157.32, 134.64, 127.97, 126.35, 81.28, 79.43, 66.29, 35.31, 31.18, 18.18. Anal. Calcd for C62H88N4O23Rh2S4 (Rh2(4S,5R-MTBSO)4·2H2O·0.5EtOAc): C, 46.79%; H, 5.57%; N, 3.52%; S, 8.06%; found: C, 46.66%; H, 5.44%; N, 3.62%; S, 7.64%. FTIR (KBr, cm−1):, 3500 br, 2965 s, 1613 s, 1417 s, 1351 s, 1267 w, 1163 s, 1113 m, 1086 s, 1014 w, 984 w, 842 m, 771 m, 754 m, 640 s, 594 m, 542 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 596.5, 308.7; 449.0, 159.6.
:
PE = 1
:
1). 1H NMR (400 MHz, acetone-d6) δ 7.77 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 5.08 (d, J = 6.2 Hz, 1H), 4.48 (d, J = 6.2 Hz, 1H), 3.89 (s, 3H), 3.79 (m, 1H), 3.52 (d, J = 7.4 Hz, 1H), 0.99 (d, J = 5.8 Hz, 3H). 13C NMR (100 MHz, acetone-d6) δ 189.73, 164.47, 130.95, 130.70, 115.29, 81.67, 80.09, 67.30, 56.26, 18.77. Anal. Calcd for C50.4H64.8N4O27.2Rh2S4 (Rh2(4S,5R-MMOSO)4·2H2O·0.6EtOAc): C, 40.47%; H, 4.37%; N, 3.75%; S, 8.57%; found: C, 40.36%; H, 4.32%; N, 3.85%; S, 8.14%. FTIR (KBr, cm−1): 3517 br, 2977 w, 1612 s, 1596 s, 1498 m, 1416 m, 1347 m, 1309 w, 1156 s, 1092 w, 984 w, 836 w, 771 w, 877 m, 600 m, 558 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 597.5, 309.2; 448.5, 146.7.
:
PE = 1
:
3), [α]20D = −259.8° (c 1.27, acetone). 1H NMR (400 MHz, CDCl3) δ 7.75 (m, 2H), 7.30 (m, 2H), 5.15 (d, J = 6.0 Hz, 1H), 4.69 (d, J = 6.0 Hz, 1H), 3.97 (m, 1H), 3.59 (m, 1H), 2.64 (m, 1H), 1.63 (m, 4H), 0.99 (m, 23H). Anal. Calcd for C92H144N4O20Rh2S4 (Rh2(4S,5R-MDOSO)4): C, 56.37%; H, 7.40%; N, 2.86%; S, 6.54%; found: C, 55.79%; H, 7.73%; N, 2.79%; S, 6.28%. FTIR (KBr, cm−1): 3467 br, 2958 m, 2928 s, 2871 w, 2856 m, 1611 s, 1466 w, 1458 w, 1419 s, 1178 s, 1161 s, 1078 m, 985 w, 770 m, 677 w, 655 m, 605 s, 577 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 596.0, 353.3; 449.0, 171.4.
:
PE = 1
:
1) . 1H NMR (300 MHz, acetone-d6): δ 8.46 (m, 2H), 8.19 (m, 2H), 5.12 (dd, J = 8.40, 4.5 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.11 (d, J = 12.0 Hz, 1H), 3.52 (dd, J = 13.5, 8.4 Hz, 1H), 3.40 (dd, J = 13.5, 4.5 Hz, 1H). 13C NMR (100 MHz, acetone-d6) δ 186.99, 150.78, 143.70, 129.37, 124.56, 62.30, 57.79, 52.03. Anal. Calcd for C44H46N8O35Rh2S8 (Rh2(NOST)4·H2O·EtOAc): C, 30.92%; H, 2.71%; N, 6.56%; S 15.01%; found: C, 30.53%; H, 2.94%; N, 6.55%; S, 14.72%. FTIR (KBr, cm−1): 3543 br, 3107 m, 3020 m, 2963 m, 2871 w, 1624 s, 1532 s, 1478 w, 1414 s, 1351 m, 1226 m, 1265 s, 1089 m, 1044 m, 1008 m, 917 w, 895 w, 856 s, 822 w, 765 s, 745 s, 684 m, 619 s, 566 m, 461 m, 433 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 595, 281.2; 450.5, 131.1.
:
PE = 1
:
1). 1H NMR (300 MHz, acetone-d6): δ 7.96 (m, 2H), 7.39 (t, J = 8.6 Hz, 2H), 5.00 (m, 1H), 4.63 (m, 1H), 4.07 (m, 1H), 3.39 (m, 2H). 13C NMR (100 MHz, acetone-d6) δ 187.02, 165.61 (JC–F = 251 Hz), 164.35, 134.61, 116.53 (JC–F = 23 Hz), 62.55, 57.79, 52.11. 19F NMR (377 MHz, acetone-d6) δ −105.93. Anal. Calcd for C44H48F4N4O28Rh2S8 (Rh2(FLST)4·2H2O·EtOAc): C, 32.64%; H, 2.99%; N, 3.46%; S 15.84%; found: C, 32.67%; H, 3.26%; N, 3.62%; S, 15.63%. FTIR (KBr, cm−1): 3423 br, 3108 w, 3019 w, 2964 w, 1624 s, 1591 s, 1494 m, 1413 s, 1297 w, 1237 m, 1156 s, 1089 w, 1006 w, 841 m, 759 m, 671 m, 576 versus 545 m, 471 versus 447 w. Vis (acetone solution, λ (nm), ε (M−1 cm−1)): 593.5, 278.3; 449.5, 133.3.
:
PE = 1
:
1). 1H NMR (300 MHz, acetone-d6): δ 8.14 (d, J = 9.0 Hz, 6.0 Hz, 2H), 7.98 (d, J = 9.0 Hz, 2H), 5.05 (m, 1H), 4.68 (d, J = 12.0 Hz, 1H), 4.15 (d, J = 12.0 Hz, 1H), 3.41 (m, 2H). 13C NMR (100 MHz, acetone-d6) δ 187.03, 142.11, 134.26 (JC–F = 33 Hz), 128.75, 126.55, 123.62 (JC–F = 271 Hz), 62.40, 57.77, 51.92. 19F NMR (377 MHz, acetone-d6) δ −63.49. Anal. Calcd for C60H68F12N4O32Rh2S8 (Rh2(TFST)4·4EtOAc): C, 35.20%; H, 3.35%; N, 2.74%; found: C, 35.20%; H, 3.58%; N, 3.25%. FTIR (KBr, cm−1): 3542 br, 3020 w, 2966 m, 2872 w, 1624 s, 1408 s, 1324 s, 1270 w, 1225 w 1168 versus 1136 s, 1111 s, 1090 w, 1063 m, 1043 w, 1012 m, 917 w, 843 m, 763 m, 712 m, 635 s, 579 m, 553 m, 465 m, 432 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 593.5, 306.9; 450.5, 141.3.
:
PE = 1
:
1). 1H NMR (300 MHz, acetone-d6): δ 7.77 (d, J = 9.0 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H), 4.91 (dd, J = 8.4, 5.1 Hz, 1H), 4.57 (d, J = 12.0 Hz, 1H), 4.02 (d, J = 12.0 Hz, 1H), 3.35 (dd, J = 13.2, 5.1 Hz, 1H), 3.26 (dd, J = 13.2, 8.4 Hz, 1H), 2.46 (s, 3H). 13C NMR (100 MHz, acetone-d6) δ 186.89, 163.84, 130.18, 129.66, 114.52, 62.81, 57.81, 55.42, 52.03. Anal. Calcd for C48H58N4O27Rh2S8 (Rh2(MEST)4·H2O·EtOAc): C, 36.37%; H, 3.69%; N, 3.53%; S 16.18%; found: C, 36.11%; H, 3.76%; N, 3.79%; S, 15.78%. FTIR (KBr, cm−1): 3499 br, 3018 m, 2961 m, 1623 s, 1598 s, 1494 w, 1414 s, 1335 s 1224 w, 1161 s, 1090 m, 1041 m, 1004 w, 916 w, 867 w, 816 w, 757 w, 666 s, 612 w, 576 m, 547 m, 467 m, 436 m. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 589.5, 247.7; 450.5, 120.5.
:
PE = 1
:
1). 1H NMR (300 MHz, acetone-d6): δ 7.84 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 9.0 Hz, 2H), 4.88 (dd, J = 8.4, 5.1 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.06 (d, J = 12 Hz, 1H), 3.35 (dd, J = 13.5, 5.1 Hz, 1H), 3.22 (dd, J = 13.5, 8.4 Hz, 1H), 1.36 (s, 9H). 13C NMR (100 MHz, acetone-d6) δ 186.95, 157.40, 135.32, 127.75, 126.34, 62.80, 57.80, 51.81, 34.95. Anal. Calcd for C56H76N4O26Rh2S8 (Rh2(TBST)4·3H2O): C, 39.53%; H, 4.62%; N, 3.29%; S 15.07%; found: C, 39.73%; H, 4.67%; N, 3.32%; S, 14.69%. FTIR (KBr, cm−1): 3349 br, 2964 m, 2871 m, 1625 s, 1595 s, 1462 w, 1412 m, 1336 s, 1268 w, 1220 m, 1164 m, 1134 m, 1113 m, 1087 w, 1040 w, 840 w, 770 m, 637 m, 579 m, 553 m, 464 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 591.5, 278.8; 451, 129.7.
:
PE = 1
:
1).1H NMR (400 MHz, acetone-d6): δ 7.85 (d, J = 8.8 Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 4.94 (dd, J = 8.8, 4.8 Hz, 1H), 4.59 (d, J = 12.0 Hz, 1H), 4.04 (d, J = 12.0 Hz, 1H), 3.38 (dd, J = 13.2, 4.8 Hz, 1H), 3.29 (dd, J = 13.2, 8.8 Hz, 1H), 2.96 (s, 3H). 13C NMR (100 MHz, acetone-d6) δ 186.89, 163.80, 130.18, 129.66, 114.52, 62.81, 57.81, 55.42, 52.03. Anal. Calcd for C44H48N4O28Rh2S8 (Rh2(MOST)4·4H2O·EtOAc): C, 33.85%; H, 3.79%; N, 3.29%; S 15.06%; found: C, 33.78%; H, 3.58%; N, 3.42%; S, 15.32%. FTIR (KBr, cm−1): 3513 br, 3102 w, 3016 w, 2951 w, 2844 w, 1622 s, 1595 s, 1499 m, 1414 s, 1335 s, 1264 s, 1225 w, 1157 s, 1092 m, 1020 m, 869 w, 837 w, 805 w, 758 w, 671 m, 614 w, 579 m, 557 m, 466 w, 434 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 592.5, 271.9; 452.5, 118.0.
:
PE = 1
:
2). 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 8.1 Hz, 2H), 7.34 (m, 2H), 4.93 (s, 1H), 4.39 (m, 1H), 3.61 (d, J = 10.8 Hz, 1H), 3.43 (s, 1H), 3.08 (s, 1H), 2.59 (m, 1H), 1.58 (m, 4H), 1.18 (m, 15H), 0.84 (m, 5H). FTIR (KBr, cm−1): 3447 br, 2957 m, 2927 s, 2855 m, 1622 s, 1462 w, 1413 m, 1338 s, 1224 w, 1161 s, 1040 w, 854 w, 589 w. UV-vis (acetone solution, λ (nm), ε (M−1 cm−1)): 596.0, 301.6; 448.0, 144.0.
:
PE = 1
:
5). 1H NMR (400 MHz, CDCl3) δ 8.36 (m, 2H), 8.17 (m, 2H), 7.30 (m, 3H), 7.20 (m, 2H), 3.88 (dd, J = 7.2, 4.6 Hz, 1H), 3.10 (d, J = 7.2 Hz, 1H), 2.49 (d, J = 4.6 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 150.83, 144.10, 134.32, 129.36, 128.93, 126.63, 124.54, 42.05, 36.75. 94% ee (AD-H, flow rate 0.8 ml min−1, 10% i-PrOH in hexane), tR = 33.62 min (major), tR = 37.64 min (minor); [α]30D = +24.2° (c 0.80, acetone); HRMS (ESI) ([M + Na]+) Calcd for C14H12O4N2S: 327.0410; found: 327.0399.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.21 (m, 4H), 7.13 (m, 6H), 6.33 (d, J = 16.0 Hz, 1H), 6.11 (d, J = 16.0 Hz, 1H), 3.75 (s, 3H), 2.99 (dd, J = 9.1, 7.4 Hz, 1H), 2.01 (ddd, J = 9.1, 5.0, 0.5 Hz, 1H), 1.81 (dd, J = 7.4, 5.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 174.37, 137.27, 135.71, 133.28, 129.30, 128.58, 128.20, 127.54, 126.98, 126.44, 124.29, 52.65, 35.18, 33.49, 18.82. 98% ee (OJ-H, flow rate 1.0 ml min−1, 1% i-PrOH in hexanes), tR = 19.56 min (major), tR = 26.68 min (minor); [α]30D = −150.6° (c 1.16, acetone); HRMS (APCI) ([M + H]+) Calcd for C19H18O2: 279.1380; found: 279.1382.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.09 (m, 9H), 6.13 (m, 2H), 3.79 (s, 3H), 2.93 (t, J = 8.3 Hz, 1H), 2.26 (s, 3H), 2.06 (dd, J = 9.1, 5.0 Hz, 1H), 1.87 (dd, J = 7.5, 5.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 174.47, 138.83, 137.44, 134.27, 131.38, 129.80, 128.49, 127.36, 127.29, 126.28, 125.72, 123.74, 52.66, 35.16, 32.06, 19.84, 19.08. 90% ee (OD-H, flow rate 0.8 ml min−1, 1% i-PrOH in hexane), tR = 10.15 min (minor), tR = 11.67 min (major); [α]30D = −29.8° (c 1.90, acetone); HRMS (APCI) ([M + H]+) Calcd for C20H20O2: 293.1536; found: 293.1537.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.19 (m, 5H), 7.00 (m, 4H), 6.34 (d, J = 16.0 Hz, 1H), 6.13 (d, J = 16.0 Hz, 1H), 3.74 (s, 3H), 2.95 (dd, J = 9.1, 7.4 Hz, 1H), 2.25 (s, 3H), 1.98 (dd, J = 9.1, 5.0 Hz, 1H), 1.77 (dd, J = 7.4, 5.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 174.43, 137.34, 136.53, 133.15, 132.59, 129.13, 128.92, 128.57, 127.49, 126.47, 124.43, 52.61, 35.03, 33.46, 21.24, 18.89. 88% ee (OJ-H, flow rate 0.8 ml min−1, 1% i-PrOH in hexane), tR = 19.43 min (major), tR = 31.11 min (minor); [α]30D = −99.7° (c 2.17, acetone); HRMS (APCI) ([M + H]+) Calcd for C20H20O2: 293.1536; found: 293.1536.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.22 (m, 7H), 6.96 (m, 2H), 6.37 (d, J = 16.0 Hz, 1H), 6.18 (d, J = 16.0 Hz, 1H), 3.80 (s, 3H), 3.03 (dd, J = 8.9, 7.5 Hz, 1H), 2.07 (dd, J = 8.9, 5.2 Hz, 1H), 1.82 (dd, J = 7.5, 5.2 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 174.18, 161.92 (d, JC–F = 245.3 Hz), 137.05, 133.31, 131.44 (d, JC–F = 3.1 Hz), 130.76 (d, JC–F = 8.0 Hz), 128.62, 127.65, 126.38, 123.97, 115.07 (d, JC–F = 21.4 Hz), 52.64, 34.36, 33.34, 18.84. 19F NMR (377 MHz, CDCl3) δ −115.75. 90% ee (OJ-H, flow rate 0.5 ml min−1, 1% i-PrOH in hexane), tR = 40.48 min (major), tR = 52.35 min (minor); [α]30D = −106.5° (c 1.80, acetone); HRMS (APCI) ([M + H]+) Calcd for C19H17O2F: 297.1285; found: 297.1289.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.34 (m, 2H), 7.21 (m, 5H), 6.99 (m, 2H), 6.35 (d, J = 16.0 Hz, 1H), 6.11 (d, J = 16.0 Hz, 1H), 3.75 (s, 3H), 2.93 (dd, J = 9.1, 7.3 Hz, 1H), 2.02 (ddd, J = 9.1, 5.2, 0.6 Hz, 1H), 1.77 (dd, J = 7.3, 5.2 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 174.03, 136.90, 134.85, 133.69, 131.25, 130.86, 128.64, 127.73, 126.43, 123.69, 120.87, 52.69, 34.30, 33.74, 18.74. 90% ee (OJ-H, flow rate 0.8 ml min−1, 3% i-PrOH in hexane), tR = 19.78 min (major), tR = 25.26 min (minor); [α]30D = −97.3° (c 2.00, acetone); HRMS (APCI) ([M + H]+) Calcd for C19H17O2Br: 357.0485; found: 357.0473.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.18 (m, 5H), 7.05 (m, 2H), 6.75 (m, 2H), 6.32 (d, J = 16.0 Hz, 1H), 6.15 (d, J = 16.0 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 2.95 (dd, J = 9.1, 7.4 Hz, 1H), 1.99 (ddd, J = 9.1, 5.0, 0.5 Hz, 1H), 1.75 (dd, J = 7.4, 5.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.36, 158.59, 137.28, 133.00, 130.27, 128.55, 127.66, 127.46, 126.40, 124.41, 113.61, 55.33, 52.54, 34.78, 33.32, 18.94. 94% ee (OJ-H, flow rate 1.0 ml min−1, 1% i-PrOH in hexane), tR = 39.10 min (major), tR = 78.01 min (minor); [α]30D = −113.7° (c 1.80, acetone); HRMS (APCI) ([M + H]+) Calcd for C20H20O3: 309.1485; found: 309.1491.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.38 (m, 2H), 7.30 (m, 2H), 7.22 (m, 1H), 6.63 (d, J = 16.0 Hz, 1H), 6.31 (d, J = 16.0 Hz, 1H), 3.68 (s, 3H), 1.63 (m, 1H), 1.58 (m, 1H), 1.29 (m, 6H), 1.10 (dd, J = 6.6, 4.1 Hz, 1H), 0.84 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 175.21, 137.30, 131.91, 128.74, 127.57, 126.47, 124.90, 52.37, 31.92, 31.82, 30.75, 28.03, 22.56, 19.62, 14.25. 92% ee (OJ-H, flow rate 0.8 ml min−1, 1% i-PrOH in hexane), tR = 9.14 min (major), tR = 9.81 min (minor); [α]30D = −102.5° (c 1.47, acetone); HRMS (APCI) ([M + H]+) Calcd for C17H22O2: 259.1693; found: 259.1695.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.42 (m, 4H), 7.17 (m, 11H), 6.45 (d, J = 16.1 Hz, 0H), 6.18 (d, J = 16.1 Hz, 1H), 3.40 (s, 3H), 2.62 (d, J = 5.4 Hz, 1H), 2.05 (d, J = 5.4 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 171.40, 142.37, 140.97, 137.51, 131.10, 130.14, 128.98, 128.57, 128.54, 128.50, 127.38, 127.05, 127.01, 126.87, 126.35, 52.06, 47.34, 39.09, 22.79. 96% ee (OJ-H, flow rate 1.0 ml min−1, 5% i-PrOH in hexane), tR = 16.45 min (minor), tR = 28.54 min (major); [α]30D = −137.7° (c 1.68, acetone); HRMS (APCI) ([M + H]+) Calcd for C25H22O2: 355.1693; found: 355.1679.
:
PE = 1
:
20). 1H NMR (400 MHz, CDCl3) δ 7.24 (m, 10H), 6.69 (d, J = 16.5 Hz, 1H), 5.85 (d, J = 16.5 Hz, 1H), 3.76 (s, 3H), 3.07 (d, J = 9.8 Hz, 1H), 2.28 (m, 1H), 1.19 (d, J = 6.7 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 174.79, 137.88, 135.05, 134.78, 131.10, 128.65, 128.47, 127.45, 126.84, 126.19, 122.32, 52.57, 36.45, 32.94, 28.01, 11.39. 90% ee (OD-H, flow rate 0.8 ml min−1, 1% i-PrOH in hexane), tR = 10.05 min (minor), tR = 10.67 min (major); [α]30D = −38.1° (c 1.60, acetone); HRMS (APCI) ([M + H]+) Calcd for C20H20O2: 293.1536; found: 293.1532.
Footnote |
| † Electronic supplementary information (ESI) available: NMR spectra of the ligands and Rh(II) complexes; CIF files giving crystallographic data. CCDC 1055407 and 1038152. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5qo00110b |
| This journal is © the Partner Organisations 2015 |