Issue 16, 2015

On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids

Abstract

In this work we demonstrate from first principles that the shear frictions describing dissipative forces in the direction normal to the vector connecting the coarse-grained (CG) particles in dissipative particle dynamics (DPD) could be dominant for certain real molecular liquids at high-resolution coarse-graining. This is in contrast to previous works on bottom-up DPD modeling and indicates that such liquids cannot be simulated accurately using the conventional form of DPD which relies only on frictions in the radial direction. Specifically, we describe the development of fully bottom-up CG models for liquid hexahydro-1,3,5-trinitro-s-triazine (RDX) which are incorporated into the DPD method. Consistent with the microscopic foundation of DPD dynamics, the conservative part of the DPD models is obtained by the multi-scale coarse-graining (MS-CG) approach, which implements the pairwise decomposition of the atomistic potential of mean force (PMF) in CG coordinates. The radial and shear distant-dependent friction coefficients in a parameter-free form are derived systematically from microscopic velocity and force correlation data along system trajectories using a recently proposed approach [J. Chem. Phys., 2014, 140, 104104]. The shear dissipative forces for the reported system appear to be dominant. We discuss the implications of dominant shear dissipation on dynamical and transport properties of CG liquids such as diffusion and viscosity as revealed by simulations of liquid RDX using the new MS-CG/DPD models.

Graphical abstract: On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids

Supplementary files

Article information

Article type
Paper
Submitted
30 Dec 2014
Accepted
11 Mar 2015
First published
23 Mar 2015

Phys. Chem. Chem. Phys., 2015,17, 10795-10804

Author version available

On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids

S. Izvekov and B. M. Rice, Phys. Chem. Chem. Phys., 2015, 17, 10795 DOI: 10.1039/C4CP06116K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements