DOI:
10.1039/C4RA10355F
(Paper)
RSC Adv., 2014,
4, 62817-62826
One-pot synthesis of 6,11-dihydro-5H-indolizino[8,7-b]indoles via sequential formation of β-enamino ester, Michael addition and Pictet–Spengler reactions†
Received
13th September 2014
, Accepted 6th November 2014
First published on 7th November 2014
Abstract
β-Enamino esters generated from addition of tryptamines to alkyl propiolates reacted with 3-phenacylideneoxindoles in the presence of anhydrous ZnCl2 to give functionalized 2-pyrrolo-3′-yloxindoles in satisfactory yields, which can be further converted to the corresponding 6,11-dihydro-5H-indolizino[8,7-b]indoles in good yields through a CF3SO3H catalyzed Pictet–Spengler cyclization process. Under similar conditions, when arylamines were used to replace tryptamine, the one-pot domino reaction afforded the functionalized 2-pyrrolo-3′-yloxindoles.
Introduction
The Pictet–Spengler reaction has long been known as an efficient method for the preparation of tetrahydro-β-carboline frameworks.1,2 In recent years, many developments have been made to incorporate Pictet–Spengler reaction into cascade sequence or multicomponent reactions based on the use of tryptamine-derived substrates.3–7 In this respect, β-enamino esters generated from reaction of tryptamines with alkyl propiolates were widely used as the valuable building blocks for sequential Pictet–Spengler reaction to construct versatile indole-annulated heterocyclics.8–11 Practically, Wu and Zhao successfully developed an organocatalytic three-component synthesis of indoloquinolizidines based on conjugate addition of β-enamino ester to α,β-enals and subsequent substrate controlled Pictet–Spengler cyclization.12 Recently, we also successfully developed facile synthetic procedure for the functionalized 1,2,6,7,12,12b-hexahydroindolo[2,3-a]quinolizines by one-pot domino reactions of tryptamines, propiolate and α,β-unsaturated aldehydes as well as arylideneacetones with Lewis acid catalyst.13 In order to develop the potential values of this one-pot domino reaction in synthetic chemistry and to hunt for new efficient domino reactions, we envisioned that spiro-indolo[2,3-a]quinolizine-oxindoles would be synthesized from the similar reactions of in situ generated β-enamino esters with 3-phenacylideneoxindoles (Scheme 1). The obtained results indicated that the domino reaction of tryptamine, alkyl propiolate and 3-phenacylideneoxindoles resulted in the functionalized 6,11-dihydro-5H-indolizino[8,7-b]indoles instead of the desired spiro-indolo[2,3-a]quinolizine-oxindole system. Herein we wish to report these interesting results.
 |
| Scheme 1 Reaction of β-enamino esters with 3-phenacylideneoxindoles. | |
Results and discussion
According to the established reaction conditions for synthesis of the functionalized 1,2,6,7,12,12b-hexahydroindolo[2,3-a]quinolizines from the one-pot reaction of tryptamine, propiolates and arylideneacetones,13 At first, tryptamine reacted with methyl propiolate in ethanol at room temperature in about twenty minutes to give the expected reactive intermediate β-enamino ester. Then, under the catalysis of anhydrous zinc chloride, the sequential reaction of the in situ generated β-enamino esters with 3-phenacylideneoxindoles resulted in the functionalized 2-pyrrolo-3′-yloxindoles 1a–1d in satisfactory yields (Table 1), not the expected Pictet–Spengler cyclized products as that in the previous reported reactions of β-enamino esters with arylideneacetones.13 The structures of functionalized 2-pyrrolo-3′-yloxindoles 1a–1d were established on the spectroscopy. The molecular structure of 1d was also determined by X-ray diffraction method (Fig. 1). The functionalized 2-pyrrolo-3′-yloxindoles 1a–1d are very interesting molecules, in which the three rings of indole, pyrrole and oxindole were connected each other with C–C single bond and ethylene bridge. 1H NMR spectra of compounds 1a–1d indicated that two isomers with a ratio of 4
:
1 or 7
:
3 exist in the products, which is attribute to the equilibrium of the keto-enol tautomers existing in the oxindole moiety. This phenomenon has been reported in the known functionalized 2-pyrrolo-3′-yloxindoles.14
Table 1 One-pot synthesis of functionalized 2-pyrrolo-3′-yloxindoles 1a–1da
 |
| Fig. 1 Molecular structure of compound 1d. | |
In order to finish the Pictet–Spengler cyclization of the above prepared functionalized 2-pyrrolo-3′-yloxindoles, many screening experiments were carried out. Finally, we found that the functionalized 2-pyrrolo-3′-yloxindoles in acetic acid at 60–70 °C in the presence of trifluoromethansulfonic acid could be successfully transferred to polysubstituted 6,11-dihydro-5H-indolizino[8,7-b]indoles 2a–2j in good yields (Table 2). The structures of 2a–2j were characterized with IR, HRMS, 1H and 13C NMR spectra and were confirmed by determination of single crystal of compound 2i (Fig. 2). It should be pointed out that acid catalyzed Pictet–Spengler cyclization of functionalized 2-pyrrolo-3′-yloxindole did no result in the expected heterocyclic spirooxindole system. The oxindole moiety is only a substituent on the core of the obtained 6,11-dihydro-5H-indolizino[8,7-b]indole.
Table 2 One-pot synthesis of 6,11-dihydro-5H-indolizino[8,7-b]indoles 2a–2ja

|
Entry |
Compd |
R1 |
R2 |
R3 |
Ar |
Yieldb (%) |
Reaction condition: 1, tryptamines (1.0 mmol), propiolate (1.0 mmol) in EtOH (5.0 mL), rt, 20 min; 2, 3-phenacylideneoxindole (1.0 mmol), ZnCl2 (0.5 mmol), rt, 12 h. 3, CF3SO3H (0.1 mmol), AcOH (5.0 mL), 60–70 °C, 6 h. Isolated yield. |
1 |
2a |
H |
CH3 |
Cl |
C6H5 |
70 |
2 |
2b |
H |
CH3 |
F |
p-CH3C6H4 |
65 |
3 |
2c |
H |
CH3 |
Cl |
p-CH3OC6H4 |
68 |
4 |
2d |
CH3O |
CH3 |
H |
p-CH3C6H4 |
67 |
5 |
2e |
CH3O |
CH3 |
CH3 |
p-ClC6H4 |
70 |
6 |
2f |
CH3O |
CH3 |
CH3 |
p-CH3C6H4 |
66 |
7 |
2g |
CH3O |
CH3 |
CH3 |
C6H5 |
63 |
8 |
2h |
CH3O |
CH3 |
F |
p-CH3C6H4 |
71 |
9 |
2i |
CH3O |
CH3 |
Cl |
p-CH3OC6H4 |
65 |
10 |
2j |
CH3O |
C2H5 |
Cl |
C6H5 |
65 |
 |
| Fig. 2 Crystal structure of compound 2i. | |
In order to explain the mechanism of this one-pot sequential reaction, we proposed a plausible reaction mechanism on the basis of our previously reported reactions containing tryptamine9 or 3-phenacylideneoxindoles10c (Scheme 2). At first, the nucleophilic addition of tryptamine to methyl propiolate gives the expected reactive intermediate β-enamino ester (A). Secondly, Michael addition of β-enamino ester (A) to the exocyclic carbon atom of 3-phenacylideneoxindole affords a adduct (B). Thirdly, under the catalysis of anhydrous zinc chloride, the intramolecular condensation of amino group with carbonyl group results in the intermediate (C), which in turn transferred to the functionalized 2-pyrrolo-3′-yloxindole 1 by elimination of water. Then, in the presence of trifluoromethanesulfonic acid, a new iminium intermediate (D) was formed by protonation of the functionalized 2-pyrrolo-3′-yloxindole 1. Finally, 6,11-dihydro-5H-indolizino[8,7-b]indoles 2 was formed through the well-known Pictet–Spengler cyclization process.
 |
| Scheme 2 Proposed formation mechanism for 6,11-dihydro-5H-indolizino[8,7-b]indoles. | |
In order to shed the light of the proposed reaction mechanism, ethyl 2-(2-oxoindolin-3-ylidene)acetates were also utilized to react with the in situ generated β-enamino ester under similar reaction conditions and the polyfunctionalized open-chain products 3a and 3b were successfully separated in 60% and 65% yields, respectively (Scheme 3). The products 3a and 3b can be considered as the intermediate B in the above proposed reaction mechanism (Scheme 2). Because there is no reactive carbonyl group in ethyl 2-(2-oxoindolin-3-ylidene)acetates, the pyrrole ring could not be formed in the sequential reaction. Thus, the reaction stopped at the second step of the proposed reaction mechanism to give the open-chain product. This result provided stronger evidence to our proposed reaction mechanism. The molecular structures of 3a and 3b were also successfully determined by X-ray diffraction method (Fig. 3 and S1†).
 |
| Scheme 3 Synthesis of the open-chain products 3a and 3b from one-pot reaction. | |
 |
| Fig. 3 Crystal structure of intermediate 3a. | |
Finally, arylamines were also introduced to replace cryptamine in the domino reaction under similar conditions. The reaction of arylamine with methyl propiolate at room temperature for about 24 hours resulted in desired β-enamino ester, which in turn reacted with 3-phenacylideneoxindole in the presence of ZnCl2 as catalyst in refluxing ethanol for about six hours. The expected functionalized 2-pyrrolo-3′-yloxindoles 4a–4f can be obtained in good yields (Table 3). 1H NMR spectra also indicated the a mixture of keto-isomer and enol-isomer with ratio of 3
:
1 to 5
:
1 exit in products 4a–4f as that in the products 1a–1d. The molecular structures of the compound 4b (Fig. 4) and 4e (Fig. S2†) were also successfully determined by X-ray diffraction method. This experiment also added conventional evidence for the proposed domino reaction mechanism in Scheme 2.
Table 3 One-pot synthesis of functionalized 2-pyrrolo-3′-yloxindoles 4a–4fa
 |
| Fig. 4 Crystal structure of intermediate 4b. | |
Conclusion
In summary, we have successfully developed a convenient procedure for synthesis of polysubstituted 6,11-dihydro-5H-indolizino[8,7-b]indoles by one-pot sequential reaction of tryptamines, alkyl propiolates and 3-phenacylideneoxindoles. The reaction mechanism involved generation of β-enamino ester, Michael addition and Pictet–Spengler cyclization process, which were stronger supported by the comparable experiments and characterization of the structures of the similar possible intermediates. This protocol has advantages of mild reaction conditions, easily accessible starting materials, easy purification of the products and wide range of substrates, which makes it a useful and attractive method for the synthesis of the complex indolizino[8,7-b]indoles in synthetic and medicinal chemistry.
Experimental section
1. General procedure for the one-pot synthesis of functionalized 2-pyrrolo-3-yloxindoles 1a–1d
A mixture of tryptamines (1.0 mmol) and methyl or ethyl propiolate (1.0 mmol) in 5.0 mL absolute ethanol was stirred at room temperature for 20 minutes. Then, 3-phenacylideneoxindole (1.0 mmol) and anhydrous zinc chloride (0.5 mmol) were added. The mixture was stirred at room temperature for additional twelve hours. The resulting precipitate was collected by filtration and washed with cold alcohol to give the pure product.
Methyl 1-(2-(1H-indol-3-yl)ethyl)-4-(5-chloro-2-oxoindolin-3-yl)-5-phenyl-1H-pyrrole-3-carboxylate (1a). White solid, 87%, m.p. 190–192 °C; 1H NMR (600 MHz, DMSO-d6) δ: keto-form: 10.82 (s, 1H, NH), 10.43 (s, 1H, NH), 7.67 (s, 1H, ArH), 7.52–7.51 (m, 3H, ArH), 7.45–7.44 (m, 2H, ArH), 7.31 (d, J = 8.4 Hz, 1H, ArH), 7.08–7.00 (m, 2H, ArH), 6.98 (brs, 1H, ArH), 6.90–6.86 (m, 1H, ArH), 6.83–6.79 (m, 1H, ArH), 4.20 (s, 1H, CH), 4.14–4.07 (m, 2H, CH), 3.38 (s, 3H, OCH3), 3.01–2.96 (m, 1H, CH), 2.94–2.89 (m, 1H, CH); enol-form: 10.77 (s, 1H, NH), 10.09 (s, 1H, NH), 7.26 (d, J = 7.2 Hz, 2H, ArH), 7.16–7.15 (m, 3H, ArH), 6.90–6.86 (m, 2H, ArH), 6.52 (d, J = 8.4 Hz, 1H, ArH), 5.51 (s, 1H, CH), 3.90 (t, J = 7.2 Hz, 2H, CH), 3.78 (s, 3H, OCH3), 2.85 (t, J = 7.2 Hz, 2H, CH); keto–enol = 4
:
1; 13C NMR (150 MHz, DMSO-d6) δ: 177.7, 163.4, 142.0, 136.3, 136.0, 133.1, 130.8, 130.0, 128.8, 128.6, 128.1, 127.0, 126.8, 124.8, 123.0, 122.5, 121.0, 118.3, 117.9, 115.3, 111.3, 111.2, 110.2, 109.9, 56.0, 50.0, 48.2, 44.7, 26.8, 18.5; IR (KBr) ν: 3548, 3010, 2355, 1694, 1622, 1585, 1537, 1476, 1453, 1406, 1373, 1333, 1244, 1173, 1097, 1066, 1017, 884, 825 cm−1; MS (m/z): HRMS (ESI) calcd for C30H24ClN3NaO3 ([M + Na]+): 532.1397. Found: 532.1398.
Methyl 1-(2-(1H-indol-3-yl)ethyl)-4-(1-benzyl-5-chloro-2-oxoindolin-3-yl)-5-p-tolyl-1H-pyrrole-3-carboxylate (1b). White solid, 92%, m.p. 149–151 °C; 1H NMR (600 MHz, DMSO-d6) δ: keto-form: 10.83 (brs, 1H, NH), 7.67 (s, 1H, ArH), 7.41–7.40 (m, 2H, ArH), 7.37–7.36 (m, 2H, ArH), 7.34–7.30 (m, 4H, ArH), 7.28–7.24 (m, 2H, ArH), 7.06–6.99 (m, 3H, ArH), 6.95–6.93 (m, 1H, ArH), 6.88 (t, J = 7.2 Hz, 2H, ArH), 6.81 (d, J = 8.4 Hz, 1H, ArH), 5.05–5.03 (m, 1H, CH), 4.79–4.76 (m, 1H, CH), 4.43 (s, 1H, CH), 4.12–4.11 (m, 2H, CH), 3.31 (s, 3H, OCH3), 3.00–2.92 (m, 2H, CH), 2.39 (s, 3H, CH3); enol-form: 10.77 (s, 1H, NH), 7.18 (d, J = 7.8 Hz, 6H, ArH), 7.12 (d, J = 7.2 Hz, 1H, ArH), 6.95–6.92 (m, 4H, ArH), 6.59 (d, J = 7.8 Hz, 1H, ArH), 6.55 (brs, 1H, ArH), 4.57–4.54 (m, 1H, CH), 4.15 (brs, 1H, CH), 3.89 (brs, 2H, CH), 3.79 (s, 3H, OCH3), 2.86–2.84 (m, 2H, CH), 2.29 (s, 3H, CH3). keto–enol = 4
:
1; 13C NMR (150 MHz, DMSO-d6) δ: 176.0, 163.4, 142.5, 138.2, 136.5, 136.0, 136.0, 132.3, 130.8, 129.5, 128.5, 128.4, 128.0, 127.4, 127.2, 127.2, 127.0, 126.9, 126.8, 125.7, 123.0, 122.4, 120.9, 118.2, 118.0, 114.9, 113.0, 111.0, 110.2, 109.5, 50.1, 48.2, 44.2, 43.2, 26.8, 20.9; IR (KBr) ν: 3561, 2946, 2355, 1692, 1618, 1560, 1527, 1476, 1454, 1396, 1336, 1099, 1014, 930, 877, 815, 769 cm−1; MS (m/z): HRMS (ESI) calcd for C38H32ClN3NaO3 ([M + Na]+): 636.2020. Found: 636.2024.
Methyl 1-(2-(1H-indol-3-yl)ethyl)-5-(4-chlorophenyl)-4-(5-methyl-2-oxoindolin-3-yl)-1H-pyrrole-3-carboxylate (1c). White solid, 85%, m.p. 190–192 °C; 1H NMR (600 MHz, DMSO-d6) δ: keto-form: 10.84 (s, 1H, NH), 10.19 (s, 1H, NH), 7.67 (s, 1H, ArH), 7.54 (d, J = 7.8 Hz, 2H, ArH), 7.41 (d, J = 7.8 Hz, 2H, ArH), 7.32 (d, J = 8.4 Hz, 1H, ArH), 7.06–7.01 (m, 2H, ArH), 6.97 (brs, 1H, ArH), 6.91–6.86 (m, 1H, ArH), 6.67 (d, J = 7.8 Hz, 1H, ArH), 6.59 (s, 1H, ArH), 4.13–4.11 (m, 3H, CH), 3.34 (s, 3H, OCH3), 2.99–2.96 (m, 1H, CH), 2.94–2.90 (m, 1H, CH), 2.19 (s, 3H, CH3); enol-form: 10.78 (s, 1H, NH), 9.88 (s, 1H, NH), 7.69 (brs, 1H, ArH), 7.28 (d, J = 8.4 Hz, 1H, ArH), 7.13 (brs, 2H, ArH), 6.71 (brs, 1H, ArH), 6.46 (d, J = 7.8 Hz, 1H, ArH), 5.43 (s, 1H, CH), 3.88 (t, J = 7.2 Hz, 2H, CH), 3.78 (s, 3H, OCH3), 2.85 (t, J = 7.2 Hz, 2H, CH); keto–enol = 7
:
3; 13C NMR (150 MHz, DMSO-d6) δ: 177.9, 177.1, 164.9, 163.4, 140.6, 136.1, 136.0, 134.7, 133.5, 132.5, 132.4, 130.9, 129.5, 129.2, 129.0, 128.8, 128.3, 127.6, 127.5, 127.3, 126.8, 126.7, 123.3, 123.0, 122.9, 121.0, 118.2, 118.1, 116.6, 111.6, 111.4, 111.3, 110.1, 108.4, 50.7, 49.8, 48.1, 47.7, 44.6, 42.9, 42.9, 26.8, 26.7, 20.7; IR (KBr) ν: 3548, 3231, 3005, 2930, 2895, 2335, 1689, 1626, 1556, 1458, 1428, 1397, 1335, 1243, 1120, 1091, 1011, 978, 876, 812 cm−1; MS (m/z): HRMS (ESI) calcd for C31H26ClN3NaO3 ([M + Na]+): 546.1555. Found: 546.1555.
Ethyl 4-(5-chloro-2-oxoindolin-3-yl)-1-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-phenyl-1H-pyrrole-3-carboxylate (1d). White solid, 90%, m.p. 190–192 °C; 1H NMR (600 MHz, DMSO-d6) δ: keto-form: 10.67 (s, 1H, NH), 10.42 (s, 1H, NH), 7.72 (s, 1H, ArH), 7.50–7.51 (m, 1H, ArH), 7.49–7.45 (m, 2H, ArH), 7.42–7.40 (m, 1H, ArH), 7.23–7.20 (m, 1H, ArH), 7.18–7.15 (m, 1H, ArH), 6.94 (brs, 1H, ArH), 6.78 (d, J = 8.4 Hz, 1H, ArH), 6.76 (brs, 1H, ArH), 6.63 (brs, 1H, ArH), 4.37 (s, 1H, CH), 3.86 (t, J = 6.6 Hz, 2H, CH), 3.66 (s, 3H, OCH3), 3.00–2.85 (m, 2H, CH), 0.97 (t, J = 7.2 Hz, 3H, CH3); enol-form: 10.62 (s, 1H, NH), 10.06 (s, 1H, NH), 7.12 (brs, 1H, ArH), 7.06–7.05 (m, 1H, ArH), 6.87 (brs, 1H, ArH), 6.83 (brs, 1H, ArH), 6.66–6.65 (m, 1H, ArH), 6.51–6.49 (m, 2H, ArH), 5.51 (s, 1H, CH), 4.27 (t, J = 7.2 Hz, 2H, CH), 3.64 (s, 3H, OCH3), 1.31 (t, J = 6.6 Hz, 3H, CH3); keto–enol = 4
:
1; 13C NMR (150 MHz, DMSO-d6) δ: 178.1, 163.5, 153.5, 142.4, 136.9, 133.6, 131.6, 131.2, 130.5, 129.2, 129.1, 128.4, 127.6, 127.4, 125.3, 124.1, 123.0, 115.4, 112.2, 111.9, 110.5, 110.4, 100.0, 58.9, 55.8, 48.6, 45.3, 27.3, 14.5; IR (KBr) ν: 3320, 3180, 3057, 2996, 2740, 1964, 1698, 1618, 1559, 1527, 1477, 1443, 1380, 1328, 1296, 1239, 1173, 1091, 1068, 1032, 927, 891, 765 cm−1; MS (m/z): HRMS (ESI) calcd for C32H28ClN3NaO4 ([M + Na]+): 576.1665. Found: 576.1661.
2. General procedure for the one-pot synthesis of 6,11-dihydro-5H-indolizino[8,7-b]indoles 2a–2j
A mixture of tryptamines (1.0 mmol) and methyl or ethyl propiolate (1.0 mmol) in 5.0 mL absolute ethanol was stirred at room temperature for 20 minutes. Then, 3-phenacylideneoxindole (1.0 mmol) and anhydrous zinc chloride (0.5 mmol) were added. The mixture was stirred at room temperature for additional twelve hours. The solvent was removed by rotatory evaporation at reduced pressure. Acetic acid (5.0 mL) and trifluoromethanesulfonic acid (0.1 mmol) were added to the residue. The resulting mixture was heated to 60–70 °C for six hours. The solvent was removed at reduced pressure. The residue was subjected to preparative thin-layer chromatography with a mixture of light petroleum and ethyl acetate (v/v = 3
:
1) as developing reagent to give the pure product fro analysis.
Methyl 2-(5-chloro-2-oxoindolin-3-yl)-3-phenyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2a). Brown solid, 68%, m.p. 282–284 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.94 (s, 1H, NH), 10.52 (s, 1H, NH), 7.65–7.51 (m, 7H, ArH), 7.19 (d, J = 8.4 Hz, 1H, ArH), 7.14 (d, J = 7.8 Hz, 1H, ArH), 7.05 (t, J = 7.2 Hz, 1H, ArH), 6.94 (s, 1H, ArH), 6.87 (d, J = 8.4 Hz, 1H, ArH), 4.38 (s, 1H, CH), 4.11–4.06 (m, 2H, CH), 3.34 (s, 3H, OCH3), 3.18–3.10 (m, 2H, CH); 13C NMR (150 MHz, DMSO-d6) δ: 177.9, 165.1, 141.6, 137.1, 136.0, 133.4, 130.7, 129.5, 128.9, 127.1, 126.0, 125.3, 125.1, 122.5, 122.3, 119.5, 118.5, 118.3, 114.9, 112.4, 110.1, 108.8, 106.4, 50.1, 45.1, 43.7, 19.9s; IR (KBr) ν: 3926, 3746, 2947, 2371, 2343, 1871, 1847, 1831, 1796, 1773, 1703, 1686, 1656, 1637, 1621, 1576, 1560, 1543, 1522, 1475, 1455, 1365, 1334, 1269, 1216, 1169, 1133, 1033, 895, 819, 788 cm−1; MS (m/z): HRMS (ESI) calcd for C30H21ClN3NaO3 ([M + Na]+): 530.1232. Found: 530.1242.
Methyl 2-(5-fluoro-2-oxoindolin-3-yl)-3-p-tolyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2b). Brown solid, 65%, m.p. 190–194 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.95 (s, 1H, NH), 10.45 (s, 1H, NH), 7.62 (d, J = 8.4 Hz, 1H, ArH), 7.55–7.54 (m, 2H, ArH), 7.49–7.48 (m, 1H, ArH), 7.38 (d, J = 7.8 Hz, 2H, ArH), 7.13 (t, J = 7.8 Hz, 1H, ArH), 7.05 (d, J = 7.8 Hz, 2H, ArH), 6.99–6.96 (m, 1H, ArH), 6.85–6.81 (m, 2H, ArH), 4.36 (s, 1H, CH), 4.09 (d, J = 7.2 Hz, 2H, CH), 3.32 (s, 3H, OCH3), 3.16–3.09 (m, 2H, CH), 2.39 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 178.1, 165.2, 138.8, 138.4, 137.0, 136.0, 133.1, 130.6, 129.8, 129.4, 126.6, 126.0, 125.3, 122.3, 119.5, 118.3, 115.0, 113.3, 113.1, 112.4, 108.7, 106.5, 50.0, 45.4, 43.6, 28.9, 20.9, 19.9; IR (KBr) ν: 3615, 2922, 2852, 2367, 1712, 1618, 1483, 1454, 1366, 1332, 1267, 1180, 1138, 1114, 943, 814, 780 cm−1; MS (m/z): HRMS (ESI) calcd for C31H24FN3NaO3 ([M + Na]+): 528.1682. Found: 528.1694.
Methyl 2-(5-chloro-2-oxoindolin-3-yl)-3-(4-methoxyphenyl)-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2c). Brown solid, 68%, m.p. 190–191 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.93 (s, 1H, NH), 10.51 (s, 1H, NH), 7.62–7.51 (m, 4H, ArH), 7.19 (d, J = 8.4 Hz, 1H, ArH), 7.13–7.12 (m, 3H, ArH), 7.05 (t, J = 7.8 Hz, 1H, ArH), 6.93 (brs, 1H, ArH), 6.87 (d, J = 8.4 Hz, 1H, ArH), 4.37 (s, 1H, CH), 4.08 (d, J = 6.6 Hz, 2H, CH), 3.82 (s, 3H, OCH3), 3.34 (s, 3H, OCH3), 3.17–3.08 (m, 2H, CH), 2.39 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 178.0, 165.2, 159.7, 141.6, 137.0, 136.0, 133.5, 132.0, 129.8, 127.0, 126.1, 125.3, 125.1, 122.5, 122.3, 121.5, 119.5, 118.3, 114.8, 114.3, 112.4, 110.0, 108.7, 106.3, 55.2, 50.0, 45.2, 43.6, 19.9; IR (KBr) ν: 3055, 2949, 2838, 2374, 1712, 1687, 1615, 1592, 1500, 1476, 1452, 1365, 1332, 1268, 1249, 1214, 1174, 1136, 1115, 1087, 1032, 945, 886, 838, 814, 790 cm−1; MS (m/z): HRMS (ESI) calcd for C31H24ClN3NaO4 ([M + Na]+): 560.1341; Found: 560.1361.
Methyl 8-methoxy-2-(2-oxoindolin-3-yl)-3-p-tolyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2d). Brown solid, 67%, m.p. 198–200 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.82 (s, 1H, NH), 10.45 (s, 1H, NH), 7.52–7.51 (m, 3H, ArH), 7.39–7.37 (m, 2H, ArH), 7.14 (t, J = 7.2 Hz, 1H, ArH), 7.03 (brs, 1H, ArH), 6.91–6.90 (m, 1H, ArH), 6.86 (d, J = 8.4 Hz, 2H, ArH), 6.77–6.76 (m, 1H, ArH), 4.34 (s, 1H, CH), 4.08–4.07 (m, 2H, CH), 3.78 (s, 3H, OCH3), 3.28 (s, 3H, OCH3), 3.15–3.06 (m, 2H, CH), 2.39 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 183.6, 170.5, 159.0, 147.9, 143.6, 142.0, 136.4, 135.2, 134.7, 132.4, 131.9, 131.9, 130.9, 127.7, 126.3, 120.9, 118.4, 118.1, 113.9, 113.6, 111.7, 104.9, 60.5, 55.2, 50.3, 48.9, 26.1, 25.3; IR (KBr) ν: 3748, 2941, 2832, 2365, 1710, 1685, 1620, 1574, 1520, 1471, 1454, 1364, 1330, 1296, 1267, 1218, 1170, 1130, 1032, 964, 928, 822, 786, 751 cm−1; MS (m/z): HRMS (ESI) calcd for C32H27N3NaO4 ([M + Na]+): 540.1884. Found: 540.1894.
Methyl 3-(4-chlorophenyl)-8-methoxy-2-(5-methyl-2-oxoindolin-3-yl)-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2e). Brown solid, 70%, m.p. 196–198 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.82 (s, 1H, NH), 10.34 (s, 1H, NH), 7.65 (s, 4H, ArH), 7.52 (d, J = 8.4 Hz, 1H, ArH), 7.04 (s, 1H, ArH), 6.95–6.94 (m, 1H, ArH), 6.78–6.73 (m, 3H, ArH), 4.30 (s, 1H, CH), 4.09 (brs, 2H, CH), 3.78 (s, 3H, OCH3), 3.29 (s, 3H, OCH3), 3.15–3.08 (m, 2H, CH), 2.18 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 178.2, 165.2, 153.8, 140.2, 135.4, 133.7, 132.5, 131.2, 131.2, 130.3, 130.0, 129.0, 128.5, 127.4, 126.4, 125.6, 123.1, 116.2, 113.2, 113.0, 108.6, 108.5, 106.4, 99.6, 55.3, 50.0, 44.9, 43.7, 20.6, 20.0; IR (KBr) ν: 3687, 2947, 2392, 2355, 2330, 1841, 1711, 1649, 1624, 1573, 1555, 1537, 1518, 1488, 1472, 1453, 1365, 1331, 1296, 1269, 1220, 1171, 1135, 1032, 1013, 964, 818 cm−1; MS (m/z): HRMS (ESI) calcd for C32H26ClN3NaO4 ([M + Na]+): 574.1497. Found: 574.1504.
Methyl 8-methoxy-2-(5-methyl-2-oxoindolin-3-yl)-3-p-tolyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2f). Brown solid, 66%, m.p. 244–246 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.81 (s, 1H, NH), 10.27 (s, 1H, NH), 7.50 (brs, 3H, ArH), 7.38 (brs, 2H, ArH), 7.03 (brs, 1H, ArH), 6.94 (brs, 1H, ArH), 6.78–6.72 (m, 3H, ArH), 4.31 (brs, 1H, CH), 4.08 (brs, 2H, CH), 3.78 (s, 3H, OCH3), 3.10 (brs, 2H, CH), 2.37 (s, 3H, CH3), 2.18 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 178.3, 165.3, 153.8, 140.2, 138.3, 136.7, 131.3, 131.2, 130.0, 130.0, 129.4, 127.4, 126.7, 126.6, 125.7, 123.1, 115.8, 113.2, 112.8, 108.4, 106.5, 99.6, 56.0, 55.3, 49.9, 45.0, 43.7, 20.8, 20.6, 20.0, 18.5; IR (KBr) ν: 3818, 3747, 3029, 2919, 1710, 1687, 1623, 1591, 1543, 1491, 1474, 1455, 1366, 1332, 1296, 1265, 1277, 1134, 1110, 1031, 963, 817 cm−1; MS (m/z): HRMS (ESI) calcd for C33H29N3NaO4 ([M + Na]+): 554.2041. Found: 554.2050.
Methyl 8-methoxy-2-(5-methyl-2-oxoindolin-3-yl)-3-phenyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2g). Brown solid, 63%, m.p. 208–210 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.84 (s, 1H, NH), 10.33 (s, 1H, NH), 7.65–7.57 (m, 4H, ArH), 7.53–7.51 (m, 2H, ArH), 7.04 (brs, 1H, ArH), 6.94 (d, J = 7.8 Hz, 1H, ArH), 6.78–6.74 (m, 3H, ArH), 4.31 (s, 1H, CH), 4.12–4.09 (m, 2H, CH), 3.78 (s, 3H, OCH3), 3.30 (s, 3H, OCH3), 3.15–3.08 (m, 2H, CH), 2.18 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 178.3, 165.3, 153.7, 140.2, 136.7, 131.2, 131.1, 130.1, 129.9, 129.6, 128.9, 128.8, 127.4, 126.5, 123.1, 115.9, 113.3, 112.9, 108.5, 108.4, 106.5, 99.5, 55.2, 50.0, 45.0, 43.7, 20.6, 20.0; IR (KBr) ν: 3346, 2947, 1716, 1624, 1575, 1489, 1455, 1365, 1268, 1136, 964, 810 cm−1; MS (m/z): HRMS (ESI) calcd for C32H27ClN3NaO4 ([M + Na]+): 540.1891. Found: 540.1894.
Methyl 2-(5-fluoro-2-oxoindolin-3-yl)-8-methoxy-3-p-tolyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2h). Brown solid, 71%, m.p. 189–191 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.84 (s, 1H, NH), 10.44 (s, 1H, NH), 7.53–7.48 (m, 3H, ArH), 7.38–7.37 (m, 2H, ArH), 7.03 (brs, 1H, ArH), 6.97 (t, J = 7.8 Hz, 1H, ArH), 6.84–6.76 (m, 3H, ArH), 4.35 (s, 1H, CH), 4.07 (brs, 2H, CH), 3.78 (s, 3H, OCH3), 3.35 (s, 3H, OCH3), 3.11–3.08 (m, 2H, CH), 2.39 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 178.2, 165.2, 153.8, 138.8, 138.4, 136.9, 133.2, 133.1, 131.2, 130.6, 130.1, 129.4, 126.6, 126.6, 125.6, 114.9, 113.3, 113.2, 113.2, 112.9, 110.4, 109.3, 109.2, 108.5, 106.3, 99.6, 55.3, 50.0, 45.5, 43.7, 20.9, 20.0; IR (KBr) ν: 3747, 2949, 2833, 2372, 2309, 1869, 1845, 1714, 1685, 1653, 1623, 1575, 1541, 1521, 1484, 1456, 1383, 1365, 1331, 1396, 1268, 1219, 1186, 1135, 1032, 962, 819, 777, 750 cm−1; MS (m/z): HRMS (ESI) calcd for C32H26FN3NaO4 ([M + Na]+): 558.1792. Found: 558.1800.
Methyl 2-(5-chloro-2-oxoindolin-3-yl)-8-methoxy-3-(4-methoxyphenyl)-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2i). Brown solid, 65%, m.p. 270–272 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.83 (s, 1H, NH), 10.55 (s, 1H, NH), 7.59–7.49 (m, 3H, ArH), 7.20 (d, J = 7.8 Hz, 1H, ArH), 7.13 (brs, 2H, ArH), 7.03 (brs, 1H, ArH), 6.94 (s, 1H, ArH), 6.87 (d, J = 7.8 Hz, 1H, ArH), 6.77 (dd, J1 = 1.8 Hz, J2 = 1.2 Hz, 1H, ArH), 4.37 (s, 1H, CH), 4.06 (t, J = 7.2 Hz, 2H, CH), 3.82 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 3.32 (s, 3H, OCH3), 3.15–3.05 (m, 2H, CH); 13C NMR (150 MHz, DMSO-d6) δ: 178.0, 165.1, 159.7, 153.8, 141.6, 136.9, 133.5, 132.0, 131.2, 123.0, 127.0, 126.6, 125.7, 125.1, 122.4, 121.5, 114.8, 114.3, 113.2, 112.9, 110.0, 108.4, 106.1, 99.6, 55.3, 55.2, 50.0, 45.2, 43.6, 20.0; IR (KBr) ν: 3616, 3167, 2950, 2833, 2369, 1709, 1682, 1619, 1592, 1574, 1500, 1475, 1454, 1364, 1333, 1290, 1268, 1249, 1222, 1174, 1132, 1032, 966, 882, 838, 816, 780 cm−1; MS (m/z): HRMS (ESI) calcd for C32H26ClN3NaO5 ([M + Na]+): 590.1445. Found: 590.1457.
Ethyl 2-(5-chloro-2-oxoindolin-3-yl)-8-methoxy-3-phenyl-6,11-dihydro-5H-indolizino[8,7-b]indole-1-carboxylate (2j). Brown solid, 65%, m.p. 197–199 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.94 (s, 1H, NH), 10.57 (s, 1H, NH), 7.65 (brs, 1H, ArH), 7.57–7.52 (m, 5H, ArH), 7.21 (d, J = 7.2 Hz, 1H, ArH), 7.04–6.98 (m, 2H, ArH), 6.86–6.77 (m, 2H, ArH), 4.38 (s, 1H, CH), 4.08 (brs, 2H, CH), 3.90–3.86 (m, 2H, CH), 3.78 (s, 3H, OCH3), 3.12 (brs, 2H, CH), 0.84 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 177.9, 164.7, 153.8, 141.5, 137.1, 133.5, 131.1, 130.7, 130.4, 129.6, 128.9, 127.0, 126.6, 125.6, 125.1, 122.5, 114.6, 113.2, 113.0, 110.2, 108.6, 106.7, 99.6, 59.1, 55.3, 45.3, 43.8, 20.0, 13.7; IR (KBr) ν: 3448, 3187, 2982, 2827, 2366, 1711, 1620, 1574, 1475, 1450, 1371, 1332, 1299, 1264, 1221, 1172, 1130, 1073, 1029, 921, 884, 843, 820, 790, 770 cm−1; MS (m/z): HRMS (ESI) calcd for C32H26ClN3NaO4 ([M + Na]+): 574.1499. Found: 574.1504.
3. General procedure for the one-pot synthesis of functionalized succinates 3a–3b
A mixture of tryptamines (1.0 mmol) and methyl or ethyl propiolate (1.0 mmol) in 5.0 mL absolute ethanol was stirred at room temperature for 20 minutes. Then, ethyl 2-(2-oxoindolin-3-ylidene)acetates (1.0 mmol) and anhydrous zinc chloride (0.5 mmol) were added. The mixture was stirred at room temperature for additional twelve hours. The solvent was removed at reduced pressure. The residue was subjected to preparative thin-layer chromatography with a mixture of light petroleum and ethyl acetate (v/v = 3
:
1) as developing reagent to give the pure product.
4-Ethyl 1-methyl 2-((2-(1H-indol-3-yl)ethylamino)methylene)-3-(5-fluoro-2-oxoindolin-3-yl)succinate (3a). White solid, 60%, m.p. 70–71 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.83 (s, 1H, NH), 10.39 (s, 1H, NH), 8.02 (brs, 1H, NH), 7.53 (d, J = 7.2 Hz, 1H, ArH), 7.32 (d, J = 8.4 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 7.06 (d, J = 8.4 Hz, 1H, ArH), 7.00–6.96 (m, 1H, ArH), 6.89 (d, J = 13.2 Hz, 1H, ArH), 6.74–6.73 (m, 1H, ArH), 4.11 (t, J = 6.6 Hz, 2H, CH), 3.91–3.80 (m, 2H, CH), 3.40–3.36 (m, 2H, CH), 3.31 (s, 3H, OCH3), 2.83 (t, J = 6.0 Hz, 2H, CH), 1.60 (t, J = 6.6 Hz, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ: 177.2, 172.7, 168.0, 158.1, 156.5, 153.8, 139.2, 136.2, 129.2, 129.1, 127.0, 122.8, 120.9, 118.3, 118.2, 114.0, 113.8, 113.7, 113.6, 111.3, 110.9, 109.5, 109.4, 87.2, 60.3, 56.0, 49.6, 48.7, 48.6, 46.0, 27.1, 18.5, 14.0; IR (KBr) ν: 3307, 2917, 2849, 1715, 1668, 1607, 1484, 1445, 1381, 1308, 1227, 1193, 1183, 1040, 932 cm−1; MS (m/z): HRMS (ESI) calcd for C26H26FN3NaO5 ([M + Na]+): 502.1760. Found: 502.1749.
4-Ethyl 1-methyl 2-((2-(1H-indol-3-yl)ethylamino)methylene)-3-(1-butyl-5-fluoro-2-oxoindolin-3-yl)succinate (3b). White solid, 65%, m.p. 102–103 °C; 1H NMR (600 MHz, DMSO-d6) δ: 10.84 (s, 1H, NH), 8.01–7.99 (m, 1H, NH), 7.52 (d, J = 7.8 Hz, 1H, ArH), 7.32 (d, J = 7.8 Hz, 1H, ArH), 7.11–7.05 (m, 4H, ArH), 6.97–6.93 (m, 2H, ArH), 6.83 (d, J = 13.2 Hz, 1H, ArH), 4.15–4.10 (m, 2H, CH), 3.97 (d, J = 4.8 Hz, 1H, CH), 3.85 (d, J = 5.4 Hz, 1H, CH), 3.68–3.63 (m, 1H, CH), 3.59–3.51 (m, 1H, CH), 3.39–3.34 (m, 2H, CH), 3.29 (s, 3H, OCH3), 2.82 (t, J = 7.2 Hz, 2H, CH), 1.47 (t, J = 7.8 Hz, 3H, CH), 1.25–1.21 (m, 2H, CH), 1.16 (t, J = 7.2 Hz, 3H, CH3), 0.85 (t, J = 7.8 Hz, 3H, CH); 13C NMR (150 MHz, DMSO-d6) δ: 175.1, 172.6, 168.0, 158.4, 156.9, 153.8, 140.2, 136.3, 128.5, 128.4, 127.0, 122.7, 121.0, 118.2, 114.0, 113.9, 113.8, 113.7, 111.3, 110.8, 108.7, 108.6, 86.9, 60.4, 48.5, 48.7, 48.1, 46.4, 29.0, 27.1, 19.3, 14.0, 13.4; IR (KBr) ν: 3315, 2917, 2850, 1730, 1684, 1665, 1616, 1486, 1465, 1382, 1207, 1227, 1198, 1152, 1102, 1039, 1001, 889 cm−1; MS (m/z): HRMS (ESI) calcd for C30H34FN3NaO5 ([M + Na]+): 558.2386. Found: 558.2375.
4. General procedure for the one-pot synthesis of functionalized 2-pyrrolo-3-yloxindoles 4a–4f
A mixture of arylamine (1.0 mmol) and methyl propiolate (1.0 mmol) in 5.0 mL absolute ethanol was stirred at room temperature for 24 hours. Then, 3-phenacylideneoxindole (0.8 mmol) and anhydrous zinc chloride (0.5 mmol) were added. The mixture was refluxed for six hours. The solvent was removed under reduced pressure. The residue was titrated with alcohol to give the pure product.
Methyl 5-(4-chlorophenyl)-4-(2-oxoindolin-3-yl)-1-p-tolyl-1H-pyrrole-3-carboxylate (4a). White solid, 76%, m.p. 250–252 °C; 1H NMR (400 MHz, DMSO-d6) δ: keto-form: 10.39 (s, 1H, NH), 7.70 (s, 1H, CH), 7.43 (d, J = 8.4 Hz, 2H, ArH), 7.28 (d, J = 8.4 Hz, 2H, ArH), 7.19 (d, J = 8.4 Hz, 2H, ArH), 7.13 (d, J = 8.0 Hz, 2H, ArH), 7.03–7.00 (m, 1H, ArH), 6.94 (d, J = 7.2 Hz, 1H, ArH), 6.85 (t, J = 8.4 Hz, 2H, ArH), 4.35 (s, 1H, CH), 3.37 (s, 3H, OCH3), 2.30 (s, 3H, CH3); enol-form: 10.13 (s, 1H, NH), 7.73 (s, 1H, CH), 7.43 (d, J = 8.4 Hz, 2H, ArH), 7.28 (d, J = 8.4 Hz, 2H, ArH), 7.19 (d, J = 8.4 Hz, 2H, ArH), 7.13 (d, J = 8.0 Hz, 2H, ArH), 7.03–7.00 (m, 1H, ArH), 6.94 (d, J = 7.2 Hz, 1H, ArH), 6.85 (t, J = 8.4 Hz, 2H, ArH), 5.55 (s, 1H, CH), 3.79 (s, 3H, OCH3), 2.21 (s, 3H, CH3). Keto–enol = 3
:
1. 13C NMR (100 MHz, DMSO-d6) δ: 128.3, 163.7, 143.5, 137.6, 136.5, 135.1, 133.5, 132.7, 131.0, 130.2, 130.0, 129.4, 129.3, 129.1, 127.7, 125.8, 123.1, 121.3, 118.1, 113.0, 109.2, 50.6, 45.0, 20.9; IR (KBr) ν: 3135, 3080, 3033, 2944, 2891, 2843, 1701, 1653, 1618, 1519, 1457, 1253, 1232, 1197, 1105, 1085, 879, 831, 752 cm−1; MS (m/z): HRMS (ESI) calcd for C27H21ClN2O3 ([M + Na]+): 479.1140. Found: 479.1133.
Methyl 4-(5-chloro-2-oxoindolin-3-yl)-5-(4-methoxyphenyl)-1-p-tolyl-1H-pyrrole-3-carboxylate (4b). White solid, 74%, m.p. 250–253 °C; 1H NMR (400 MHz, DMSO-d6) δ: keto-form: 10.50 (s, 1H, NH), 7.66 (s, 1H, CH), 7.21–7.15 (m, 7H, ArH), 6.97 (brs, 2H, ArH), 6.92 (d, J = 8.4 Hz, 2H, ArH), 6.83 (d, J = 8.4 Hz, 1H, ArH), 4.36 (s, 1H, CH), 3.73 (s, 3H, OCH3), 3.41 (s, 3H, OCH3), 2.29 (s, 3H, CH3); enol-form: 10.18 (s, 1H, NH), 7.13 (brs, 1H, ArH), 7.80 (d, J = 7.6 Hz, 2H, ArH), 7.01 (brs, 1H, ArH), 6.63 (d, J = 8.4 Hz, 2H, ArH), 6.45 (d, J = 8.0 Hz, 2H, ArH), 5.56 (s, 1H, CH), 3.81 (s, 3H, OCH3), 3.64 (s, 3H, OCH3), 2.24 (s, 3H, CH3). Keto–enol = 5
:
1. 13C NMR (100 MHz, CDCl3) δ: 178.1, 163.8, 159.5, 142.5, 137.4, 136.8, 136.6, 133.4, 132.4, 130.0, 128.7, 127.5, 125.8, 125.3, 123.1, 122.5, 116.6, 114.4, 113.3, 110.5, 55.5, 50.6, 45.2, 20.9; IR (KBr) ν: 3178, 3123, 3034, 2946, 2918, 2860, 1698, 1625, 1518, 1490, 1248, 1204, 1123, 1096, 1024, 836, 810 cm−1; MS (m/z): HRMS (ESI) calcd for C28H23ClN2O4 ([M + Na]+): 509.1235. Found: 509.1239.
Methyl 4-(5-chloro-2-oxoindolin-3-yl)-1,5-bis(4-methoxyphenyl)-1H-pyrrole-3-carboxylate (4c). White solid, 80%, m.p. 245–248 °C; 1H NMR (400 MHz, DMSO-d6) δ: keto-form: 10.49 (s, 1H, NH), 7.63 (s, 1H, CH), 7.21–7.18 (m, 5H, ArH), 6.97 (brs, 1H, ArH), 6.93–6.91 (m, 4H, ArH), 6.88 (d, J = 8.0 Hz, 1H, ArH), 4.34 (s, 1H, CH), 3.75 (s, 3H, OCH3), 3.72 (s, 3H, OCH3), 3.41 (s, 3H, OCH3); enol-form: 10.17 (s, 1H, NH), 7.05 (d, J = 8.4 Hz, 2H, ArH), 6.64 (d, J = 8.4 Hz, 2H, ArH), 6.50 (m, 5H, ArH), 5.56 (s, 1H, CH), 3.81 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 3.63 (s, 3H, OCH3). Keto–enol = 5
:
1. 13C NMR (100 MHz, DMSO-d6) δ: 178.1, 163.8, 159.5, 158.7, 142.5, 136.8, 133.5, 132.5, 132.2, 128.8, 127.5, 127.5, 127.4, 125.3, 123.1, 122.5, 116.4, 114.6, 114.4, 113.1, 110.5, 55.8, 55.5, 50.6, 45.3; IR (KBr) ν: 3309, 3123, 3002, 2932, 2836, 1733, 1699, 1653, 1616, 1558, 1540, 1508, 1251, 1199, 1177, 1094, 1027, 813 cm−1; MS (m/z): HRMS (ESI) calcd for C28H23ClN2O5 ([M + Na]+): 525.1184. Found: 525.1188.
Methyl 4-(5-chloro-2-oxoindolin-3-yl)-1,5-dip-tolyl-1H-pyrrole-3-carboxylate (4d). White solid, 70%, m.p. 240–242 °C; 1H NMR (400 MHz, DMSO-d6) δ: keto-form: 10.50 (s, 1H, NH), 7.67 (s, 1H, CH), 7.19–7.12 (m, 8H, ArH), 6.96 (brs, 1H, ArH), 6.83 (d, J = 8.4 Hz, 1H, ArH), 4.37 (s, 1H, CH), 3.41 (s, 3H, OCH3), 2.29 (s, 3H, CH3), 2.27 (s, 3H, CH3); enol-form: 10.21 (s, 1H, NH), 7.12 (brs, 1H, ArH), 7.08 (d, J = 8.0 Hz, 2H, ArH), 6.70 (brs, 2H, ArH), 6.79 (d, J = 7.2 Hz, 2H, ArH), 6.64 (d, J = 8.0 Hz, 1H, ArH), 6.42 (d, J = 6.8 Hz, 2H, ArH), 5.59 (s, 1H, CH), 3.81 (s, 3H, OCH3), 2.24 (s, 3H, CH3), 2.15 (s, 3H, CH3). Keto–enol = 5
:
1. 13C NMR (100 MHz, DMSO-d6) δ: 178.0, 163.8, 142.5, 138.0, 137.4, 136.7, 136.7, 133.4, 131.0, 130.0, 129.6, 128.9, 127.5, 127.4, 125.9, 125.3, 123.1, 116.7, 113.4, 110.5, 56.5, 50.7, 45.2, 21.2, 20.9, 19.0; IR (KBr) ν: 3341, 3184, 3130, 3034, 2948, 2921, 2857, 1695, 1653, 1618, 1558, 1518, 1476, 1257, 1231, 1199, 1113, 1091, 823 cm−1; MS (m/z): HRMS (ESI) calcd for C28H23ClN2O3 ([M + Na]+): 493.1258. Found: 493.1397.
Methyl 4-(5-fluoro-2-oxoindolin-3-yl)-1-(4-methoxyphenyl)-5-p-tolyl-1H-pyrrole-3-carboxylate (4e). White solid, 76%, m.p. 245–248 °C; 1H NMR (400 MHz, DMSO-d6) δ: keto-form: 10.38 (s, 1H, NH), 7.64 (s, 1H, CH), 7.19–7.16 (m, 6H, ArH), 6.97–6.90 (m, 3H, ArH), 6.82–6.78 (m, 2H, ArH), 4.34 (s, 1H, CH), 3.75 (s, 3H, OCH3), 3.40 (s, 3H, OCH3), 2.27 (s, 3H, CH3); enol-form: 10.10 (s, 1H, NH), 7.04 (d, J = 8.4 Hz, 2H, ArH), 6.83 (brs, 2H, ArH), 6.61 (brs, 1H, ArH), 6.44 (d, J = 7.2 Hz, 1H, ArH), 5.60 (s, 1H, CH), 3.81 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 2.14 (s, 3H, CH3). Keto–enol = 5
:
1. 13C NMR (100 MHz, DMSO-d6) δ: 178.3, 163.8, 158.8, 157.1, 139.7, 138.0, 136.9, 132.2, 131.0, 129.5, 129.0, 127.5, 127.4, 116.6, 114.6, 114.5, 113.8, 113.6, 113.3, 111.1, 110.9, 109.7, 109.6, 55.7, 50.6, 45.6, 21.2; IR (KBr) ν: 3178, 3139, 2948, 2920, 2867, 2838, 1703, 1653, 1627, 1611, 1559, 1515, 1483, 1459, 1296, 1249, 1235, 1197, 1124, 1105, 1082, 1033, 928, 828 cm−1; MS (m/z): HRMS (ESI) calcd for C28H23FN2O4 ([M + Na]+): 493.1529. Found: 493.1534.
Methyl 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-4-(5-methyl-2-oxoindolin-3-yl)-1H-pyrrole-3-carboxylate (4f). White solid, 77%, m.p. 230–232 °C; 1H NMR (600 MHz, CDCl3) δ: keto-form: 8.58 (s, 1H, NH), 7.56 (s, 1H, CH), 7.28–7.27 (m, 3H, ArH), 7.05 (d, J = 8.4 Hz, 2H, ArH), 6.96 (d, J = 7.8 Hz, 1H, ArH), 6.83 (d, J = 8.4 Hz, 2H, ArH), 6.79 (d, J = 7.8 Hz, 1H, ArH), 6.73–6.72 (m, 2H, ArH), 4.61 (s, 1H, CH), 3.80 (s, 3H, OCH3), 3.46 (s, 3H, OCH3), 2.25 (s, 3H, CH3); enol-form: 8.41 (s, 1H, NH), 7.25 (brs, 2H, ArH), 6.99 (brs, 1H, ArH), 6.20 (d, J = 9.0 Hz, 1H, ArH), 6.87 (d, J = 8.4 Hz, 2H, ArH), 6.62 (d, J = 7.8 Hz, 1H, ArH), 6.52 (d, J = 7.8 Hz, 2H, ArH), 5.80 (s, 1H, CH), 3.89 (s, 3H, OCH3), 3.74 (s, 3H, OCH3), 2.27 (s, 3H, CH3). Keto–enol = 3
:
1; 13C NMR (100 MHz, DMSO-d6) δ: 178.3, 163.7, 158.8, 141.0, 135.2, 133.5, 132.7, 132.5, 131.9, 131.1, 130.1, 129.5, 129.4, 129.0, 127.9, 127.8, 127.8, 127.4, 123.8, 117.9, 114.8, 114.6, 113.7, 109.0, 55.8, 50.6, 45.1, 21.1; IR (KBr) ν: 3197, 3077, 3038, 2945, 2918, 2864, 1703, 1652, 1624, 1558, 1520, 1490, 1252, 1201, 1117, 1093, 818, 773 cm−1; MS (m/z): HRMS (ESI) calcd for C28H23ClN2O4 ([M + Na]+): 509.1238. Found: 509.1239.
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant no. 21272200) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. We also thank Analysis and Test Center of Yangzhou University providing instruments for analysis.
References
-
(a) E. D. Cox and J. M. Cook, Chem. Rev., 1995, 95, 1797–1842 CrossRef CAS;
(b) B. E. Maryanoff, H. Zhang, J. H. Cohen, I. J. Turchi and C. A. Maryanoff, Chem. Rev., 2004, 104, 1431–1628 CrossRef CAS PubMed;
(c) J. Royer, M. Bonin and L. Micouin, Chem. Rev., 2004, 104, 2311–2352 CrossRef CAS PubMed.
-
(a) J. Ma, W. Yin, H. Zhou and J. M. Cook, Org. Lett., 2007, 9, 3491–3494 CrossRef CAS PubMed;
(b) S. M. Allin, C. I. Thomas, K. Doyle and M. R. J. Elsegood, J. Org. Chem., 2005, 70, 357–359 CrossRef CAS PubMed;
(c) M. J. Wanner, R. N. A. Boots, B. Eradus, R. de Gelder, J. H. van Maarseveen and H. Hiemstra, Org. Lett., 2009, 11, 2579–2581 CrossRef CAS PubMed;
(d) R. S. Klausen and E. N. Jacobsen, Org. Lett., 2009, 11, 887–890 CrossRef CAS PubMed;
(e) D. J. Mergott, S. J. Zuend and E. N. Jacobsen, Org. Lett., 2008, 10, 745–748 CrossRef CAS PubMed;
(f) J. Seayad, M. J. Seayad and B. List, J. Am. Chem. Soc., 2006, 128, 1086–1087 CrossRef CAS PubMed.
-
(a) A. W. Pilling, J. Boehmer and D. J. Dixon, Angew. Chem., Int. Ed., 2007, 46, 5428 CrossRef CAS PubMed;
(b) T. Yang, L. Campbell and D. J. Dixon, J. Am. Chem. Soc., 2007, 129, 12070–12071 CrossRef CAS PubMed;
(c) T. Yang, A. Ferrali, L. Campbell and D. J. Dixon, Chem. Commun., 2008, 2923–2925 RSC;
(d) J. Franzén and A. Fisher, Angew. Chem., Int. Ed., 2009, 48, 787–791 CrossRef PubMed;
(e) W. Zhang and J. Franzén, Adv. Synth. Catal., 2010, 352, 499–518 CrossRef CAS.
-
(a) D. Papadopoulou, I. papoutsis, S. Spyroudis and A. Varvoglis, Tetrahedron Lett., 1998, 39, 6342–6346 CrossRef;
(b) B. E. A. Burro, M. M. Meijler, J. Korver, M. J. Wanner and G.-J. Koomen, Tetrahedron, 1998, 54, 6135–6146 CrossRef;
(c) M. Y. Chang, C. Y. Chen, W. S. Chung, M. R. Tasi and N. C. Chang, Tetrahedron, 2005, 61, 585–591 CrossRef CAS;
(d) S. M. Allin, J. S. Khera, J. Witherington and M. J. Elsegood, Tetrahedron Lett., 2006, 47, 5737–5739 CrossRef CAS;
(e) M. W. Smith, R. Hunter, D. J. Patten and W. Hinz, Tetrahedron Lett., 2009, 50, 6342–6346 CrossRef CAS PubMed.
-
(a) X. Y. Wu, X. Y. Dai, L. L. Nie, H. H. Fang, J. Chen, Z. J. Ren, W. G. Cao and G. Zhao, Chem. Commun., 2010, 46, 2733–2735 RSC;
(b) H. H. Fang, X. Y. Wu, L. L. Nie, X. Y. Dai, J. Chen, W. G. Cao and G. Zhao, Org. Lett., 2010, 12, 5366–5369 CrossRef CAS;
(c) X. Y. Wu, H. H. Fang, Q. Liu, N. N. Nie, J. Chen, W. G. Cao and G. Zhao, Tetrahedron, 2011, 67, 7251–7257 CrossRef CAS PubMed.
-
(a) M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt and D. J. Dixon, J. Am. Chem. Soc., 2009, 131, 10796–10797 CrossRef CAS PubMed;
(b) P. Jakubec, M. Helliwell and D. J. Dixon, Org. Lett., 2008, 10, 4267–4270 CrossRef CAS PubMed;
(c) M. Rueping, C. M. R. Volla, M. Bolte and G. Raabe, Adv. Synth. Catal., 2011, 353, 2853–2859 CrossRef CAS;
(d) M. Rueping and C. M. R. Volla, RSC Adv., 2011, 1, 79–91 RSC.
-
(a) Z. C. Jin, X. Wang, H. C. Huang, X. M. Liang and J. X. Ye, Org. Lett., 2011, 13, 564–567 CrossRef CAS PubMed;
(b) Z. C. Jin, H. C. Huang, W. J. Li, X. Y. Luo, X. M. Liang and J. X. Ye, Adv. Synth. Catal., 2011, 353, 343–348 CrossRef CAS;
(c) H. L. Zhou, J. B. Ling and P. F. Xu, J. Org. Chem., 2012, 77, 7737–7743 CrossRef PubMed.
-
(a) P. D. Bailey, S. P. Hollinshead and Z. Dauter, J. Chem. Soc., Chem. Commun., 1985, 1507–1509 RSC;
(b) P. D. Bailey and S. P. Hollinshead, Tetrahedron Lett., 1987, 28, 2879–2882 CrossRef CAS;
(c) P. D. Bailey and S. P. Hollinshead, J. Chem. Soc., Perkin Trans. 1, 1998, 739–745 Search PubMed;
(d) P. Rosenmund, B. Brandt, P. Flecker and E. Hoffmann, Liebigs Ann. Chem., 1990, 9, 857–862 CrossRef;
(e) U. Rosentreter, L. Born and J. Kurz, J. Org. Chem., 1986, 51, 1165–1171 CrossRef CAS;
(f) H. H. Wasserman, R. Frechette, T. Oida and J. H. Van Duzer, J. Org. Chem., 1989, 54, 6012–6014 CrossRef CAS;
(g) P. D. Bailey, I. D. Collier, S. P. Hollinshead, M. H. Moore, K. M. Morgan, D. I. Smith and J. M. Vernon, J. Chem. Soc., Chem. Commun., 1994, 1559–1560 RSC.
-
(a) S. P. Govek and L. E. Overman, J. Am. Chem. Soc., 2001, 123, 9468–9469 CrossRef CAS;
(b) G. C. Condie and J. Bergman, Eur. J. Org. Chem., 2004, 1286–1297 CrossRef CAS;
(c) A. S. Karpov, F. Rominger, T. J. J. Mueller and A. S. Karpov, Org. Biomol. Chem., 2005, 3, 4382–4391 RSC;
(d) S. P. Chavan, P. Sharma, S. Rasapalli and U. R. Kalkote, Tetrahedron Lett., 2006, 47, 9301–9303 CrossRef CAS PubMed;
(e) F. Volz and N. Krause, Org. Biomol. Chem., 2007, 5, 1519–1521 RSC.
-
(a) M. Ohba, I. Natsutani and T. Sakuma, Tetrahedron, 2007, 63, 10337–10344 CrossRef CAS PubMed;
(b) S. P. Govek and L. E. Overman, Tetrahedron, 2007, 63, 8499–8513 CrossRef CAS PubMed;
(c) L. G. Voskressensky, T. N. Borisova, L. N. Kulikova, E. G. Dolgova, A. I. Kleimenov, E. A. Sorokina, A. A. Titov and A. V. Varlamov, Chem. Heterocycl. Compd., 2007, 43, 587–598 CrossRef CAS;
(d) A. Gonzalez-Gomez, G. Dominguez and J. Perez-Castells, Tetrahedron, 2009, 65, 3378–3391 CrossRef CAS PubMed.
-
(a) H. Dueckert, V. Pries, V. Khedkar, S. Menninger, H. Bruss, A. W. Bird, Z. Maliga, A. Brockmeyer, P. Janning and A. Hyman, Nat. Chem. Biol., 2012, 8, 179–184 CrossRef CAS PubMed;
(b) R. Skouta, M. Hayano, K. Shimada and B. R. Stockwell, Bioorg. Med. Chem. Lett., 2012, 22, 5707–5713 CrossRef CAS PubMed;
(c) R. Chaniyara, S. Tala, C. W. Chen, X. G. Zang, R. Kakadiya, L. F. Lin, C. H. Chen, S. I. Chien, T. C. Chou and T. H. Tsai, J. Med. Chem., 2013, 56, 1544–1563 CrossRef CAS PubMed;
(d) V. Eschenbrenner-Lux, H. Dückert, V. Khedkar, H. Bruss, H. Waldmann and K. V. Frank, Chem.–Eur. J., 2013, 19, 2294–2304 CrossRef CAS PubMed.
- X. Y. Wu, X. Y. Dai, H. H. Fang, L. L. Nie, J. Chen, W. G. Cao and G. Zhao, Chem.–Eur. J., 2011, 17, 10510–10514 CrossRef CAS.
- L. L. Zhang, J. Sun and C. G. Yan, Tetrahedron, 2013, 69, 5451–5459 CrossRef PubMed.
-
(a) S. Rehn and J. Bergman, Tetrahedron, 2005, 61, 3115–3123 CrossRef CAS PubMed;
(b) G. Shanthi and P. T. Perumal, Tetrahedron Lett., 2009, 50, 3959–3962 CrossRef CAS PubMed;
(c) Y. Han, Y. Sun, J. Sun and C. G. Yan, Tetrahedron, 2012, 68, 8256–8260 CrossRef CAS PubMed.
Footnote |
† Electronic supplementary information (ESI) available: 1H and 13C NMR spectra for all new compounds are available. CCDC 1013721–1013724, 1022835 and 1022862. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra10355f |
|
This journal is © The Royal Society of Chemistry 2014 |
Click here to see how this site uses Cookies. View our privacy policy here.