Organocatalytic domino Michael/cyclization reaction: efficient synthesis of multi-functionalized tetracyclic spirooxindoles with multiple stereocenters

Zu-Kang Fu , Jin-Yun Pan, Dong-Cheng Xu and Jian-Wu Xie*
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. China. E-mail: xiejw@zjnu.cn; Fax: +86 579 82282610

Received 31st July 2014 , Accepted 3rd October 2014

First published on 3rd October 2014


Abstract

The asymmetric domino reaction of various 3-nitro-2H-chromene derivatives 2 to 3-isothiocyanato oxindole 3 with moderate to good enantioselectivities, employing readily available bifunctional thiourea 1d as the organocatalyst, was described. A series of chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c] pyrrole-1,3′-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters were successfully prepared. Notably, the products 5 could be cleanly converted to the compounds 4 in ethanol under mild conditions.


Introduction

Spirocyclic compounds are recognized as important precursors for easy access to a variety of cyclic products by rearrangement reaction due to their steric strain associated with the quaternary carbon.1 Development of novel synthetic methods for the construction of new spirocyclic compounds represents a major challenge in synthetic organic and medicinal chemistry.2 Recently, the highly functionalized spirocyclic oxindoles have drawn tremendous interest of researchers3 in the area of synthetic organic chemistry as well as medicinal chemistry worldwide because they occur in many natural products and have been reported to have various types of bioactivity.4 Due to their significant and varied biological activities design and development of novel methods for the construction of functionalized spirooxindoles have drawn remarkable interest from the synthetic, organic as well as medicinal chemists.5 Recently, 3-isothiocyanato oxindoles emerged as the most attractive reactants in organocatalytic cascade Aldol/cyclization reactions,6 Michael/cyclization reactions,7 Manich/cyclization reactions8 and [3 + 2] cyclization9 for the synthesis of the highly functionalized spirocyclic oxindoles. From the literature we realized that benzopyran scaffolds exhibit a wide range of biological activities such as anti-cancer, diuretic, anticoagulant, and anti-anaphylactic activity.10–12 Recently, chiral multi-functionalized tetracyclic benzopyran derivatives have been prepared from 3-nitro-2H-chromenes in our group (eqn (1), Scheme 1).13 To the best of our knowledge there is no method reported for the asymmetric synthesis of chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3′-indoline] derivatives from the cascade reaction of 3-isothiocyanato oxindoles and 3-nitro-2H-chromenes. In continuation of our efforts towards the development of functionalized heterocycles using domino reactions, we envisioned that chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3′-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters could be synthesized by domino reaction of 3-isothiocyanato oxindoles and 3-nitro-2H-chromenes in the presence of organocatalyst (eqn (2) and Scheme 1).
image file: c4ra07860h-s1.tif
Scheme 1 General strategy for the synthesis of tetracyclic spirooxindoles.

Results and discussion

Organocatalytic asymmetric reactions have been used as a powerful tool for the synthesis of enantiopure molecules with multiple stereocenters by employing either a single catalyst or a combination of catalysts under mild, environmentally benign conditions over the past decades.14 To evaluate this hypothesis, 3-nitro-2H-chromene 2a and 3-isothiocyanato oxindole 3a were first applied. A few representative results are shown in Table 1. To our surprise, the domino reaction was completed within one minute when the reaction was carried out in the presence of the organocatalysts (Scheme 2) in DCM at −50 °C, while the diastereoselectivity was poor. To our delight, the chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3′-indoline] derivatives 4aa and 5aa were easily isolated by column chromatography. Both cinchona alkaloids and bifunctional thioureas have appeared to be efficient organocatalysts in asymmetric transformations since the basic tertiary nitrogen of cinchona alkaloids could activate nucleophiles by deprotonation, whereas the secondary hydroxyl group or thiourea moiety would serve as hydrogen-bonding donor in the activation of electrophiles such as α,β-unsaturated carbonyl compounds or nitroalkenes. As such, quinine 1a and cinchonine 1b were firstly screened, high yields were obtained while the ees were poor to moderate (Table 1, entries 1 and 2). Similar results were obtained when the domino reaction was catalyzed by 1c (Table 1, entry 3). Subsequently, the bifunctional thioureas 1d–1h which have appeared to be efficient organocatalysts for asymmetric additions,15 exhibited a higher catalytic activity when the domino reaction was carried out at −50 °C within one minute (Table 1, entries 4–8). To our surprise, organocatalyst 1d, derived from quinine, was proved to be superior to 1e in this domino reaction, and products were obtained with up to 78% ee (Table 1, entry 4). High yields were obtained when the domino reaction was catalyzed by other thiourea-tertiary amines 1f–1h while the enantioselectivities were somewhat low. The effect of catalyst loading on reaction efficiency has been evaluated (Table 1, entries 9–11). While 10 mol % of thiourea-tertiary amine 1d was routinely employed in this investigation, it appears that catalyst loadings as low as 5 mol % provide better enantioselectivity (Table 1, entry 10).
Table 1 Catalyst screeninga

image file: c4ra07860h-u1.tif

Entry Cat. Time Yieldb %/eec (4aa) Yieldb %/eec (5aa)
a Reaction conditions: 0.24 mmol of 2a, 0.10 mmol of 3a, 10 mol% of cat in 1 mL DCM at −50 °C for 1 min.b Isolated yield.c Determined by chiral HPLC analysis.d 1 mol% of 1d was added.e 5 mol% 1d of was added.f 15 mol% of 1d was added.
1 1a 1 min 48/61 39/-32
2 1b 1 min 45/30 36/05
3 1c 1 min 57/37 37/04
4 1d 1 min 49/-78 43/72
5 1e 1 min 47/75 39/60
6 1f 1 min 52/70 40/50
7 1g 1 min 53/-36 36/13
8 1h 1 min 47/60 41/10
9d 1d 1 min 40/76 31/69
10e 1d 1 min 49/80 43/70
11f 1d 1 min 51/78 43/72



image file: c4ra07860h-s2.tif
Scheme 2 Organocatalysts 1a–1h.

Subsequently, we investigated the effects of solvent on the reactivity, and most commonly used solvents are compatible with our asymmetric conditions and afforded high yields (total yields: 80–95%) with varied enantioselectivities (Table 2, entries 1–9). The reaction in a polar solvent such as THF, ethanol and ether, afforded the desired products with somewhat lower enantioselectivities (entries 3–5). After solvents were screened, chloroform turned out to be optimal to give the products in higher enantioselectivities and yields (Table 2, entry 6). In the hope of higher enantioselectivities, we decreased the reaction concentration from 1.0 to 0.5 M. As a result, a better enantiomeric excess was achieved (entry 7) within one minute. The ee was decreased when the temperature was elevated, as well as when the concentration was reduced to 0.25 M (entries 8–9). Based on the above screening, the optimal reaction conditions: 0.24 equiv of 2 and 1.0 equiv of 3a in chloroform with 5 mol% of catalyst 1d at −50 °C were established.

Table 2 Optimization of reaction conditionsa

image file: c4ra07860h-u2.tif

Entry Solvent Yieldb/eec (4aa) Yieldb/eec (5aa)
a Reaction conditions: 0.24 mmol of 2a, 0.10 mmol of 3a, 5 mol% of 1d in 1 mL Solvent at −50 °C.b Isolated yield.c Determined by chiral HPLC analysis.d 0.24 mmol of 2a, 0.10 mmol of 3a, in 2 mL CHCl3.e 4 mL CHCl3.f −60 °C.
1 DCM 49/80 43/70
2 Toluene 48/65 42/48
3 THF 48/50 44/20
4 Ether 43/65 37/61
5 Ethanol 45/70 39/60
6 CHCl3 52/79 43/74
7d CHCl3 49/81 44/77
8e CHCl3 50/80 45/70
9f CHCl3 46/82 42/70


To test the substrate scope of domino reaction, the reaction of various 3-nitro-2H-chromene derivatives 2 with 3-isothiocyanato oxindole 3 was studied under the optimized conditions using 5 mol% of bifunctional thiourea 1d as the catalyst. The results are summarized in Table 3. As shown in Table 3, the domino reaction of various 3-nitro-2H-chromene derivatives 2 with 3-isothiocyanato oxindole 3 all gave high yields and good enantioselectivities of the desired products. Good enantioselectivities were obtained in the domino reaction of α,α-dicyanoolefins with electron-withdrawing substituent on Ar ring of 3-nitro-2H-chromene derivatives (Table 3, entries 2, 3, 5, 6). In addition, an electron-donating substituent on Ar ring of 3-nitro-2H-chromene derivatives tended to increase the reactivity and enantioselectivity (Table 3, entries 7 and 8). 3-Nitro-2H-chromene derivative 2d with electron withdrawing substituents on the ortho position afford multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3′-indoline] derivative with slightly inferior enantioselectivity (Table 3, entry 4). However, it should be noted that 3-nitro-2H-chromene with a furanyl show no reactivity in this system, and it remains to be explored. Gratifyingly, the reaction of 3-nitro-2H-chromene derivatives 3 with electron withdrawing substituent or electron-donating group on the R1 group afford the desired products with a slight effect on enantioselectivities (Table 3, entries 7–11), and the enantioselectivities were up to 84%. Further exploration of the substrate scope was focused on 3-isothiocyanato oxindole 3 bearing various substituents. Replace the substituent methyl with ethyl, 3-isothiocyanato oxindole 3b showed good reactivity; excellent yields were obtained with high enantioselectivities (Table 3, entries 14–18).

Table 3 The substrate scope of domino reactiona

image file: c4ra07860h-u3.tif

Entry R1 Ar 2 R2 3 Yieldb/eec% 4 Yieldb/eec% 5
a Otherwise noted, reactions performed with 0.2 mmol of 2, 0.1 mmol of 3, 20 mol% of 1e in 1 mL DCM at 10 °C under N2 for 36 h.b Isolated yield and yield based on 3.c Determined by the chiral HPLC analysis.
1 H Ph 2a Me 3a 49/81 4aa 44/77 5aa
2 H p-BrC6H4 2b Me 3a 43/82 4ab 52/80 5ab
3 H m-BrC6H4 2c Me 3a 56/81 4ac 42/80 5ac
4 H o-BrC6H4 2d Me 3a 43/67 4ad 45/70 5ad
5 H p-ClC6H4 2e Me 3a 49/80 4ae 47/71 5ae
6 H p-FC6H4 2f Me 3a 47/82 4af 46/80 5af
7 H p-CH3C6H4 2j Me 3a 49/83 4ag 40/85 5aj
8 H p-OCH3C6H4 2k Me 3a 39/83 4ah 60/81 5ak
9 5-Br Ph 2l Me 3a 53/83 4ai 41/51 5al
10 5-Cl Ph 2m Me 3a 51/84 4aj 40/51 5am
11 5-Cl p-CH3C6H4 2n Me 3a 49/82 4ak 37/66 5an
12 5-CH3 Ph 2o Me 3a 40/74 4al 47/86 5ao
13 4-OCH3 Ph 2p Me 3a 45/72 4am 38/76 5ap
14 H Ph 2a Et 3b 54/82 4ba 42/80 5ba
15 H p-BrC6H4 2b Et 3b 46/83 4bb 50/84 5bb
16 H p-FC6H4 2f Et 3b 46/82 4bf 47/82 5bf
17 H p-CH3C6H4 2j Et 3b 45/83 4bj 48/82 5bj
18 H p-OCH3C6H4 2k Et 3b 44/84 4bk 43/82 5bk


Interestingly, the product 5ac could be cleanly converted to the compound 4ac in ethanol with quantitative yield under base conditions for six days, and better ee was obtained (Scheme 3).


image file: c4ra07860h-s3.tif
Scheme 3 Selective transformation of domino reaction product.

To determine the absolute configuration of chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c] pyrrole-1,3′-indoline] derivatives, single crystal suitable for X-ray crystallographic analysis was fortunately obtained from enantiopure 4ca and 5ac that bear a bromine atom. As shown in Fig. 1, it composes of (C1R, C2S, C3S, C4S for 4ca; C1S, C2S, C3S, C4S for 5ca) configuration.


image file: c4ra07860h-f1.tif
Fig. 1 The X-ray diffraction analysis of compounds 4ac and 5ac.

According to the above experimental results and previously reported dual activation model,13b both the substrates involved in the transition state are activated by bifunctional thiourea 1d as proposed in Fig. 2. The Michael acceptor is assumed to be activated and oriented by the hydrogen bonds of the bifunctional thiourea, while the tertiary amine of the catalyst would provide suitable basicity to enhance the nucleophilicity of the 3-isothiocyanato oxindole. The well-defined orientation facilitates the Re attack on the activated 3-nitro-2H-chromene derivative, which favors the formation of the C2S stereocenter. Subsequent intramolecular cyclization through the attack the isothiocyanato group afforded the major C3S configured product.


image file: c4ra07860h-f2.tif
Fig. 2 Proposed transition states.

Conclusions

In conclusion, we have successfully demonstrated the domino reaction of various 3-nitro-2H-chromene derivatives 2 to 3-isothiocyanato oxindole 3 with moderate to good enantioselectivities, employing readily available bifunctional thiourea 1d as the organocatalyst, which shows to be more effective catalyst than the ditrifluoromethylated one. After simple synthetic transformations, chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-1,3′-indoline] derivatives with four vicinal chiral carbon centers including two quaternary stereocenters were successfully prepared. Notably, the products 5 could be cleanly converted to the compounds 4 in DCM under mild conditions. Further application of this reaction to other substrates and to the preparation of biologically relevant compound are currently underway.

Experimental section

General methods

Column chromatography was performed using silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. 1H NMR and 13C NMR spectra were recorded on Bruker DRX 400 spectrometer at room temperature in CDCl3 as solvent. Chemical shifts for protons are reported using residual CHCl3 as internal reference (=7.26 ppm). Carbon spectra were referenced to the shift of the 13C signal of CDCl3 (=77.0 ppm). Coupling constants (J) are given in Hz. IR spectra were recorded using a Perkin-Elmer 1600 Series FTIR. ESI-HRMS spectrometer was measured with a Finnigan LCQDECA ion trap mass spectrometer. Optical rotations were measured at 589 nm at 25 °C in a 1 dm cell and specific rotations are given in 10−1 deg cm2 g−1. Enantiomeric excess were determined by HPLC analysis using Daicel Chiralpak AD column (4.6 mm* 250 mm, 5 μm) Commercial grade solvents were dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997).

General procedure for the synthesis of chiral multi-functionalized tetracyclic spiro[chromeno[3,4-c]pyrrole-,3′-indoline] derivatives

A mixture of 2a (25.3 mg, 0.10 mmol), 3a (20.4 mg, 0.10 mmol) and 5 mol% of 1d was stirred in CHCl3 (1 mL) at −50 °C for 1 minute, then flash chromatography on silica gel (20% ethyl acetate/petroleum ether) gave product 4aa and 5aa as yellow solid.
4aa. Yellow solid, mp 204.8–206.1 °C; 22.4 mg, yield 49%; 1H NMR (600 MHz, CDCl3) δ 8.51 (s, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.57–7.49 (m, 3H), 7.41–7.34 (m, 3H), 7.30–7.24 (m, 1H), 7.16 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.74 (t, J = 7.5 Hz, 1H), 6.44 (s, 1H), 6.28 (d, J = 7.8 Hz, 1H), 5.05 (s, 1H), 2.99 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 192.9, 172.7, 154.4, 143.5, 133.6, 131.9, 129.7, 129.6, 128.9, 127.0, 126.9, 126.3, 124.7, 124.5, 122.2, 118.1, 115.8, 109.4, 97.2, 79.7, 71.6, 53.0, 26.7.ESI-HRMS: calcd. for C25H19N3O4S + Na 480.0988, found 480.0983; [α]20D = −155.3 (c 0.47, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), −81% ee, tminor = 6.61 min, tmajor = 15.71 min.
5aa. Yellow solid, mp 188.4–190.2 °C; 20.1 mg, yield 44%; 1H NMR (600 MHz, CDCl3) δ 8.75 (s, 1H), 7.26–7.23 (m, 2H), 7.18–7.15 (m, 4H), 7.02–6.97 (m, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.78–6.70 (m, 2H), 6.64–6.59 (m, 1H), 6.39 (dd, J = 18.5, 6.7 Hz, 3H), 5.46 (s, 1H), 3.30 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 195.1, 174.8, 152.4, 143.6, 133.5, 131.1, 129.6, 129.4, 129.3, 128.9, 128.1, 126.4, 123.7, 123.2, 122.6, 120.5, 118.8, 108.9, 98.4, 81.6, 72.8, 47.3, 27.3.ESI-HRMS: calcd. for C25H19N3O4S + Na 480.0988, found 480.0989; [α]20D = −103.8 (c 0.35, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), 77% ee, tmajor = 5.87 min, tminor = 10.61 min.
4ab. Yellow solid, mp 208.2–209.6 °C; 23.0 mg, yield 43%;1H NMR (600 MHz, CDCl3) δ 8.72 (s, 1H), 7.61 (d, J = 7.3 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.16 (dd, J = 11.4, 4.2 Hz, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.42 (s, 1H), 6.27 (d, J = 7.7 Hz, 1H), 5.07 (s, 1H), 2.99 (s, 1H). 13C NMR (150 MHz, CDCl3) δ 192.8, 172.7, 165.6, 154.3, 143.5, 132.8, 132.1, 131.5, 130.1, 129.8, 126.8, 126.4, 124.8, 124.5, 123.1, 122.5, 118.1, 115.6, 109.5, 97.3, 79.2, 71.7, 53.0, 26.8. ESI-HRMS: calcd. for C25H18BrN3O4S + Na 560.0079, found 560.0074; [α]20D = −125.6 (c 0.39, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −82% ee, tminor = 5.28 min, tmajor = 11.24 min.
5ab. Yellow solid, mp 198.5–200 °C; 27.8 mg, yield 52%;1H NMR (600 MHz, DMSO) δ 11.68 (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.28 (dd, J = 7.5, 4.8 Hz, 3H), 7.09 (d, J = 7.8 Hz, 1H), 7.05–7.02 (m, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.66 (dd, J = 11.5, 4.3 Hz, 1H), 6.60 (d, J = 7.4 Hz, 2H), 6.08 (s, 1H), 5.42 (s, 1H), 3.29 (s, 3H). 13C NMR (150 MHz, DMSO) δ 193.0, 174.3, 152.2, 144.2, 133.4, 131.8, 131.1, 131.0, 129.9, 129.8, 126.1, 124.4, 123.2, 123.0, 120.1, 118.1, 109.7, 99.2, 80.0, 73.2, 55.3, 47.7, 27.4. [α]20D = −87.7 (c 0.22, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 80% ee, tmajor = 5.09 min, tminor = 9.81 min.
4ac. Yellow solid, mp 154.4–155.3 °C; 29.9 mg, yield 56%;1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 7.73 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.55–7.45 (m, 3H), 7.31–7.13 (m, 3H), 7.00 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.42 (s, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.09 (s, 1H), 3.01 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 192.7, 172.7, 154.2, 143.5, 135.9, 132.7, 132.1, 131.9, 129.8, 128.5, 128.3, 126.8, 126.4, 124.8, 124.5, 122.5, 121.0, 118.1, 115.6, 109.5, 97.3, 78.8, 71.7, 53.0, 26.8. ESI-HRMS: calcd. for C25H18BrN3O4S + Na 560.0079, found 560.0058; [α]20D = −251.9 (c 0.35, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), −81% ee, tminor = 6.34 min, tmajor = 7.56 min.
5ac. Yellow solid, mp 216.2–218.1 °C; 22.5 mg, yield 42%;1H NMR (400 MHz, DMSO) δ 11.68 (s, 1H), 7.56–7.53 (m, 2H), 7.28 (ddd, J = 18.8, 14.2, 7.8 Hz, 3H), 7.07 (dd, J = 18.6, 7.6 Hz, 2H), 6.84 (d, J = 8.1 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.68 (t, J = 7.0 Hz, 2H), 6.62 (d, J = 7.3 Hz, 1H), 6.04 (s, 1H), 5.40 (s, 1H), 3.29 (s, 3H). 13C NMR (100 MHz, DMSO) δ 192.8, 174.3, 152.2, 147.4, 144.2, 136.5, 132.5, 131.0, 130.0, 129.8, 128.6, 126.2, 124.4, 123.2, 123.1, 121.1, 119.8, 118.0, 109.7, 99.1, 79.7, 73.1, 55.3, 47.8, 27.4. [α]20D = −37.9 (c 0.29, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), 80% ee, tmajor = 5.40 min, tminor = 7.25 min.
4ad. Yellow solid, mp 196.3–198.1 °C; 23.0 mg, yield 43%; 1H NMR (600 MHz, CDCl3) δ 8.51 (s, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.54–7.51 (m, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.26–7.23 (m, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.99–6.96 (m, 2H), 6.95 (s, 1H), 6.78 (t, J = 7.5 Hz, 1H), 6.36 (d, J = 7.7 Hz, 1H), 4.93 (s, 1H), 3.04 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 192.0, 172.1, 153.9, 143.7, 134.0, 132.3, 132.0, 130.6, 129.7, 126.9, 126.7, 126.1, 124.6, 122.4, 118.3, 116.5, 109.3, 96.3, 77.9, 71.5, 26.7. ESI-HRMS: calcd. for C25H18BrN3O4S + Na 560.0079, found 560.0047; [α]20D = −122.0 (c 0.19, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), −67% ee, tminor = 8.58 min, tmajor = 10.10 min.
5ad. Yellow solid, mp 118.6–119.7 °C; 24.1 mg, yield 45%; 1H NMR (600 MHz, DMSO) δ 11.75 (s, 1H), 7.67 (dd, J = 8.0, 1.0 Hz, 1H), 7.24 (td, J = 7.8, 1.0 Hz, 1H), 7.19 (td, J = 7.8, 1.5 Hz, 1H), 7.07 (dd, J = 18.2, 7.9 Hz, 2H), 7.00–6.92 (m, 2H), 6.91 (s, 1H), 6.67 (t, J = 7.2 Hz, 2H), 6.63 (d, J = 6.6 Hz, 1H), 6.57 (dd, J = 11.6, 4.2 Hz, 1H), 6.32 (d, J = 7.5 Hz, 1H), 5.69 (s, 1H), 3.26 (s, 3H). 13C NMR (150 MHz, DMSO) δ 193.8, 174.1, 151.5, 143.9, 133.8, 133.2, 131.5, 130.9, 130.1, 129.7, 129.3, 127.4, 126.0, 125.4, 124.8, 123.4, 122.8, 118.2, 109.5, 100.0, 79.8, 73.8, 55.4, 49.0, 46.3, 27.3. [α]20D = −48.0 (c 0.25, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 70% ee, tmajor = 14.60 min, tminor = 22.57 min.
4ae. Yellow solid, mp 174.3–175.8 °C; 20.1 mg, yield 49%; 1H NMR (600 MHz, CDCl3) δ 8.61 (d, J = 18.1 Hz, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.56–7.44 (m, 3H), 7.37–7.27 (m, 3H), 7.17 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 8.1 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 6.43 (d, J = 12.7 Hz, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.08 (s, 1H), 3.01 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 192.8, 172.7, 154.4, 143.5, 134.8, 132.2, 132.1, 131.2, 129.8, 127.2, 126.8, 126.4, 124.8, 124.5, 122.5, 118.2, 115.6, 109.5, 97.3, 97.3, 79.1, 71.7, 53.0, 26.7. ESI-HRMS: calcd. for C25H18ClN3O4S + Na 514.0059, found 514.0589; [α]20D = −100.0 (c 0.14, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −80% ee, tminor = 5.17 min, tmajor = 10.49 min.
5ae. Yellow solid, mp 119.5–121.2 °C; 23.1 mg, yield 47%; 1H NMR (600 MHz, DMSO) δ 11.63 (s, 1H), 7.29 (s, 4H), 7.23 (td, J = 7.7, 1.0 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 7.00–6.96 (m, 1H), 6.75 (d, J = 7.5 Hz, 1H), 6.70 (td, J = 7.6, 0.6 Hz, 1H), 6.63–6.58 (m, 1H), 6.54 (d, J = 7.7 Hz, 2H), 6.04 (s, 1H), 5.37 (s, 1H), 3.23 (s, 3H). 13C NMR (150 MHz, DMSO) δ 193.0, 174.3, 152.2, 144.2, 134.3, 133.0, 131.5, 131.0, 129.9, 129.7, 128.1, 126.1, 124.4, 123.1, 123.0, 120.2, 118.1, 109.7, 99.2, 79.9, 73.2, 47.6, 27.4. [α]20D = −164.3 (c 0.14, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 71% ee, tmajor = 4.97 min, tminor = 8.80 min.
4af. Yellow solid, mp 177.3–178.9 °C; 21.8 mg, yield 47%; 1H NMR (600 MHz, CDCl3) δ 8.51 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.55–7.52 (m, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 7.04 (t, J = 8.6 Hz, 2H), 7.00 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.82–6.70 (m, 1H), 6.43 (d, J = 11.1 Hz, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.06 (s, 1H), 3.01 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 193.0, 172.7, 163.9, 162.3, 154.4, 143.5, 132.1, 131.6, 131.6, 129.8, 129.5, 126.9, 126.3, 124.8, 124.5, 122.4, 118.2, 115.6, 114.1, 113.9, 109.5, 97.2, 79.2, 71.7, 53.1, 26.7. ESI-HRMS: calcd. for C25H18FN3O4S + Na 498.0894, found 498.0871; [α]20D = −223.9 (c 0.22, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), −82% ee, tminor = 6.33 min, tmajor = 15.26 min.
5af. Yellow solid, mp 184.3–185.6 °C; 21.8 mg, yield 46%; 1H NMR (600 MHz, CDCl3) δ 8.77 (s, 1H), 7.26 (dd, J = 9.4, 6.0 Hz, 1H), 7.17 (dd, J = 8.7, 5.2 Hz, 2H), 7.01 (dd, J = 11.2, 4.2 Hz, 1H), 6.89–6.83 (m, 3H), 6.79–6.72 (m, 2H), 6.64 (t, J = 7.5 Hz, 1H), 6.42 (d, J = 7.5 Hz, 1H), 6.38 (d, J = 7.6 Hz, 1H), 6.30 (s, 1H), 5.42 (s, 1H), 3.30 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 194.8, 174.7, 164.0, 162.3, 152.3, 143.6, 131.2, 130.9, 130.8, 129.7, 129.5, 129.3, 126.4, 123.6, 123.3, 122.8, 120.1, 118.8, 115.2, 115.1, 109.0, 98.3, 80.8, 72.7, 47.4, 31.6. [α]20D = −57.3 (c 0.23, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), 80% ee, tmajor = 5.95 min, tminor = 11.33 min.
4ag. Yellow solid, mp 144.7–145.9 °C; 23.1 mg, yield 49%; 1H NMR (600 MHz, CDCl3) δ 8.51 (s, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.42 (d, J = 8.1 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.15 (dd, J = 14.4, 4.6 Hz, 3H), 6.98–6.97 (m, 1H), 6.93 (d, J = 7.9 Hz, 1H), 6.73 (td, J = 7.7, 1.0 Hz, 1H), 6.39 (s, 1H), 6.28 (d, J = 7.7 Hz, 1H), 5.03 (s, 1H), 2.99 (s, 3H), 2.37 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 193.1, 172.8, 154.5, 143.6, 138.8, 131.9, 130.7, 129.7, 129.6, 127.9, 127.1, 126.3, 124.7, 124.5, 122.2, 118.2, 115.9, 109.4, 97.2, 79.8, 71.6, 53.0, 26.7, 21.5. ESI-HRMS: calcd. for C26H21N3O4S + Na 494.1145, found 494.1117; [α]20D = −119.1 (c 0.23, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −83% ee, tminor = 6.96 min, tmajor = 11.49 min.
5ag. Yellow solid, mp 166.1–167.4 °C; 18.8 mg, yield 40%; 1H NMR (600 MHz, CDCl3) δ 8.66 (s, 1H), 7.26–7.23 (m, 1H), 7.03 (dd, J = 8.3, 1.8 Hz, 2H), 6.99 (td, J = 8.2, 1.5 Hz, 1H), 6.96 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 7.8 Hz, 1H), 6.77–6.73 (m, 1H), 6.72 (td, J = 7.6, 0.8 Hz, 1H), 6.61 (td, J = 7.6, 1.1 Hz, 1H), 6.37 (dt, J = 6.6, 2.3 Hz, 3H), 5.47 (s, 1H), 3.30 (s, 3H), 2.23 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 195.3, 174.7, 152.4, 143.5, 139.3, 131.0, 130.4, 129.5, 129.3, 128.8, 128.7, 126.4, 123.6, 123.1, 122.5, 120.6, 118.8, 108.8, 98.4, 81.5, 72.6, 47.1, 27.2, 21.1. [α]20D = −316.2 (c 0.12, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 85% ee, tmajor = 4.56 min, tminor = 9.23 min.
4ah. Yellow solid, mp 182.4–183.5 °C; 18.9 mg, yield 39%; 1H NMR (600 MHz, CDCl3) δ 8.49 (s, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.52 (td, J = 7.8, 1.0 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.17–7.14 (m, 1H), 6.98 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 6.75–6.72 (m, 1H), 6.38 (s, 1H), 6.28 (d, J = 7.6 Hz, 1H), 5.02 (s, 1H), 3.82 (s, 3H), 2.99 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 193.2, 172.8, 160.0, 154.5, 143.6, 132.0, 131.0, 129.7, 127.0, 126.3, 125.8, 124.7, 124.5, 122.2, 118.2, 115.8, 112.5, 109.4, 97.1, 79.6, 71.6, 55.3, 53.1, 26.7. ESI-HRMS: calcd. for C26H21N3O5S + Na 510.1049, found 510.1055; [α]20D = −90.6 (c 0.18, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −83% ee, tminor = 6.99 min, tmajor = 16.59 min.
5ah. Yellow solid, mp 166.3–167.5 °C; 29.2 mg, yield 60%; 1H NMR (600 MHz, CDCl3) δ 8.70 (s, 1H), 7.26–7.23 (m, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.00 (t, J = 7.7 Hz, 1H), 6.84 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.72 (t, J = 7.6 Hz, 1H), 6.65–6.60 (m, 3H), 6.36 (d, J = 8.5 Hz, 3H), 5.46 (s, 1H), 3.69 (s, 3H), 3.28 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 195.3, 174.7, 160.1, 152.5, 143.6, 131.1, 130.3, 129.6, 129.5, 126.5, 125.6, 123.7, 123.2, 122.5, 120.7, 118.9, 113.5, 108.9, 98.5, 81.4, 72.7, 55.2, 47.1, 27.2. [α]20D = −187.5 (c 0.11, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 81% ee, tmajor = 4.91 min, tminor = 10.33 min.
4ai. Yellow solid, mp 208.4–209.5 °C; 28.4 mg, yield 53%; 1H NMR (600 MHz, CDCl3) δ 8.42 (s, 1H), 7.61 (d, J = 7.3 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.50 (d, J = 7.1 Hz, 2H), 7.40–7.34 (m, 3H), 7.31 (t, J = 7.5 Hz, 1H), 7.27 (dd, J = 8.8, 2.3 Hz, 1H), 6.99 (d, J = 7.9 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 6.41 (d, J = 2.2 Hz, 1H), 6.39 (s, 1H), 4.98 (s, 1H), 3.04 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 192.4, 172.6, 153.6, 143.4, 133.2, 132.7, 132.3, 129.7, 129.2, 129.0, 127.1, 126.6, 125.0, 124.5, 120.0, 118.2, 114.3, 109.5, 96.5, 80.1, 71.5, 31.7, 26.8. ESI-HRMS: calcd. for C25H18BrN3O4S + Na 560.0079, found 560.0034; [α]20D = −171.4 (c 0.16, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −83% ee, tminor = 5.16 min, tmajor = 18.83 min.
5ai. Yellow solid, mp 189.1–190.7 °C; 21.9 mg, yield 41%; 1H NMR (600 MHz, CDCl3) δ 8.83 (s, 1H), 7.33–7.30 (m, 1H), 7.28–7.24 (m, 1H), 7.19 (t, J = 7.7 Hz, 2H), 7.16–7.12 (m, 2H), 7.11–7.09 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.65 (dd, J = 8.6, 4.3 Hz, 1H), 6.41 (dd, J = 9.6, 4.3 Hz, 2H), 6.37 (t, J = 6.5 Hz, 1H), 5.38 (s, 1H), 3.29 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 194.8, 174.6, 151.6, 143.5, 133.1, 132.5, 132.3, 131.6, 129.6, 128.8, 128.3, 126.3, 123.3, 123.1, 122.4, 120.5, 114.6, 109.2, 97.7, 81.5, 72.7, 46.8.[α]20D = −82.2 (c 0.24, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 51% ee, tmajor = 5.60 min, tminor = 10.99 min.
4aj. Yellow solid, mp 200.4–201.2 °C; 25.0 mg, yield 51%; 1H NMR (600 MHz, CDCl3) δ 8.40 (s, 1H), 7.61 (d, J = 7.3 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.51 (d, J = 7.1 Hz, 2H), 7.42–7.34 (m, 3H), 7.31 (t, J = 7.6 Hz, 1H), 7.18–7.11 (m, 1H), 6.97 (dd, J = 21.8, 8.3 Hz, 2H), 6.40 (s, 1H), 6.26 (d, J = 2.3 Hz, 1H), 4.99 (s, 1H), 3.05 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 192.4, 172.6, 153.1, 143.4, 133.2, 132.3, 129.8, 129.7, 129.2, 128.0, 127.1, 127.1, 126.6, 126.0, 125.0, 124.5, 119.6, 117.6, 109.6, 100.0, 96.6, 80.1, 71.4, 52.7, 26.8. ESI-HRMS: calcd. for C25H18ClN3O4S + Na 514.0599, found 514.0552; [α]20D = −114.9 (c 0.16, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −84% ee, tminor = 5.17 min, tmajor = 18.67 min.
5aj. Yellow solid, mp 178.7–180.1 °C; 19.6 mg, yield 40%; 1H NMR (600 MHz, CDCl3) δ 8.80 (s, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.26 (t, J = 7.3 Hz, 1H), 7.19 (t, J = 7.7 Hz, 2H), 7.14 (d, J = 7.5 Hz, 2H), 7.02–6.93 (m, 2H), 6.89 (d, J = 7.8 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.71–6.49 (m, 1H), 6.43–6.37 (m, 2H), 6.29 (d, J = 2.3 Hz, 1H), 5.39 (s, 1H), 3.30 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 194.8, 174.6, 151.1, 143.5, 133.1, 131.6, 129.7, 129.6, 129.2, 128.8, 128.3, 127.4, 126.3, 123.3, 123.2, 122.0, 120.1, 109.2, 97.8, 81.6, 72.6, 46.9, 27.3. [α]20D = −191.5 (c 0.16, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 51% ee, tmajor = 5.68 min, tminor = 10.67 min.
4ak. Yellow solid, mp 192.3–193.7 °C; 24.7 mg, yield 49%; 1H NMR (600 MHz, CDCl3) δ 8.42 (s, 1H), 7.61 (d, J = 7.3 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 7.8 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H), 7.20–7.11 (m, 3H), 6.99 (d, J = 7.8 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 6.35 (s, 1H), 6.26 (d, J = 2.1 Hz, 1H), 4.97 (s, 1H), 3.04 (s, 3H), 2.38 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 192.5, 172.6, 153.1, 143.5, 139.1, 132.3, 130.2, 129.8, 129.5, 128.0, 127.0, 125.9, 124.9, 124.5, 119.6, 117.7, 109.5, 96.5, 80.1, 71.4, 52.6, 26.8, 21.5. ESI-HRMS: calcd. for C26H20ClN3O4S + Na 528.0755, found 528.0717; [α]20D = −75.0 (c 0.13, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −82% ee, tminor = 7.71 min, t major = 17.79 min.
5ak. Yellow solid, mp 174.3–175.1 °C; 18.7 mg, yield 37%; 1H NMR (600 MHz, CDCl3) δ 8.84 (s, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 8.3 Hz, 2H), 7.00–6.96 (m, 2H), 6.96 (d, J = 2.4 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.70 (d, J = 8.7 Hz, 1H), 6.40 (s, 1H), 6.36 (d, J = 7.4 Hz, 1H), 6.30 (d, J = 2.3 Hz, 1H), 5.41 (s, 1H), 3.31 (s, 3H), 2.24 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 195.0, 174.6, 151.1, 143.5, 139.6, 131.5, 130.1, 129.6, 129.3, 129.0, 128.7, 127.3, 126.3, 123.2, 122.3, 120.2, 109.2, 97.9, 81.6, 72.6, 46.8, 27.3, 21.2. [α]20D = −80.0 (c 0.15, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 66% ee, tmajor = 5.14 min, tminor = 12.27 min.
4al. Yellow solid, mp 176.2–177.1 °C; 18.8 mg, yield 40%; 1H NMR (600 MHz, DMSO) δ 11.56 (s, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.40–7.32 (m, 6H), 7.22 (d, J = 7.9 Hz, 1H), 7.04–6.99 (m, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.36 (s, 1H), 6.03 (s, 1H), 5.05 (s, 1H), 2.99 (s, 3H), 1.99 (s, 3H). 13C NMR (150 MHz, DMSO) δ 192.1, 173.1, 151.8, 143.9, 134.4, 131.9, 131.6, 130.4, 129.8, 129.1, 127.9, 127.3, 126.7, 125.2, 124.6, 117.4, 116.9, 109.9, 97.4, 79.7, 72.1, 51.7, 26.9, 21.2. ESI-HRMS: calcd. for C26H21N3O4S + Na 494.1145, found 494.1114; [α]20D = −179.2 (c 0.24, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −74% ee, tminor = 4.56 min, tmajor = 17.89 min.
5al. Yellow solid, mp 190.1–191.6 °C; 22.1 mg, yield 47%; 1H NMR (600 MHz, CDCl3) δ 8.74 (s, 1H), 7.29–7.22 (m, 2H), 7.19–7.12 (m, 4H), 6.85 (d, J = 7.8 Hz, 1H), 6.79 (dd, J = 8.3, 1.4 Hz, 1H), 6.73 (t, J = 7.6 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 6.40 (s, 1H), 6.32 (d, J = 7.4 Hz, 1H), 6.07 (s, 1H), 5.39 (s, 1H), 3.29 (s, 3H), 1.92 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 195.5, 174.8, 150.2, 143.6, 133.7, 131.9, 131.1, 130.2, 130.1, 129.3, 128.9, 128.2, 126.6, 123.6, 122.9, 119.9, 118.4, 108.8, 98.3, 81.5, 72.8, 47.0, 27.2, 21.1. [α]20D = −54.5 (c 0.15, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 86% ee, tmajor = 4.53 min, tminor = 12.58 min.
4am. Yellow solid, mp 148.3–149.6 °C; 21.9 mg, yield 45%; 1H NMR (600 MHz, CDCl3) δ 8.52 (s, 1H), 7.63 (d, J = 7.4 Hz, 1H), 7.57 (d, J = 6.7 Hz, 2H), 7.53 (dd, J = 15.1, 7.4 Hz, 1H), 7.44–7.34 (m, 3H), 7.31–7.26 (m, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.53 (d, J = 2.4 Hz, 1H), 6.45 (d, J = 7.0 Hz, 1H), 6.35 (dd, J = 8.7, 2.5 Hz, 1H), 6.18 (d, J = 8.7 Hz, 1H), 4.99 (s, 1H), 3.71 (s, 3H), 3.02 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 193.2, 172.9, 160.5, 155.5, 143.5, 133.6, 131.9, 129.8, 129.0, 127.0, 124.7, 124.5, 110.2, 109.4, 107.5, 102.1, 97.1, 79.8, 71.8, 55.3, 53.2, 26.7. ESI-HRMS: calcd. for C26H21N3O5S + Na 510.1049, found 510.1056; [α]20D = −101.5 (c 0.22, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), −72% ee, tminor = 6.79 min, tmajor = 10.83 min.
5am. Yellow solid, mp 138.3–139.7 °C; 18.5 mg, yield 38%; 1H NMR (600 MHz, CDCl3) δ 8.62 (s, 1H), 7.29–7.24 (m, 3H), 7.18–7.16 (m, 3H), 6.84–6.83 (m, 1H), 6.78 (td, J = 7.6, 0.7 Hz, 1H), 6.42 (d, J = 7.6 Hz, 1H), 6.37–6.34 (m, 1H), 6.31 (t, J = 2.4 Hz, 1H), 6.27–6.18 (m, 2H), 5.37 (s, 1H), 3.62 (s, 3H), 3.27 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 195.2, 174.8, 160.5, 153.6, 143.7, 133.5, 131.2, 130.3, 129.5, 128.9, 128.2, 126.8, 123.6, 123.2, 112.0, 109.7, 108.9, 103.3, 98.3, 81.6, 72.8, 55.4, 46.9, 27.2. [α]20D = −105.0 (c 0.13, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (35% 2-propanol/hexane, 1.0 mL min−1), 76% ee, tmajor = 5.04 min, tminor = 7.99 min.
4ba. Yellow solid, mp 162.1–163.6 °C; 25.4 mg, yield 54%; 1H NMR (600 MHz, CDCl3) δ 8.45 (br, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.48 (d, J = 6.9 Hz, 2H), 7.44 (dd, J = 15.2, 7.5 Hz, 1H), 7.29 (ddd, J = 15.9, 7.7, 2.4 Hz, 3H), 7.20 (t, J = 7.6 Hz, 1H), 7.08 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.42 (s, 1H), 6.23 (d, J = 7.7 Hz, 1H), 4.97 (s, 1H), 3.54 (dt, J = 14.4, 7.4 Hz, 1H), 3.27–3.18 (m, 1H), 0.63–0.61 (m, 3H). 13C NMR (150 MHz, CDCl3) δ 193.1, 172.8, 154.5, 143.4, 133.6, 132.0, 129.8, 129.8, 129.0, 127.0, 126.6, 124.8, 124.5, 122.2, 118.2, 115.6, 109.6, 96.9, 79.8, 71.4, 53.4, 42.5, 20.7, 11.4. ESI-HRMS: calcd. for C26H21N3O4S + Na 494.1145, found 494.1141; [α]20D = −86.5 (c 0.17, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL min−1), −82% ee, tminor = 5.63 min, tmajor = 11.55 min.
5ba. Yellow solid, mp 130.5–131.6 °C; 19.8 mg, yield 42%; 1H NMR (600 MHz, CDCl3) δ 8.59 (s, 1H), 7.23 (t, J = 7.8 Hz, 2H), 7.20–7.14 (m, 4H), 7.00 (t, J = 7.2 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6.72 (t, J = 7.6 Hz, 1H), 6.62 (t, J = 7.4 Hz, 1H), 6.44 (d, J = 7.5 Hz, 1H), 6.39 (t, J = 7.0 Hz, 2H), 5.48 (d, J = 3.9 Hz, 1H), 3.83 (dt, J = 14.4, 7.4 Hz, 1H), 3.70–3.64 (m, 1H), 1.06 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 195.2, 174.6, 152.5, 143.1, 133.6, 131.1, 129.6, 129.4, 129.2, 128.9, 128.2, 127.0, 126.6, 123.8, 123.0, 122.6, 120.6, 118.9, 109.2, 100.0, 98.5, 81.7, 79.8, 72.6, 47.5, 42.5. [α]20D = −71.4 (c 0.14, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL min−1), 80% ee, tmajor = 4.99 min, tminor = 5.94 min.
4bb. Yellow solid, mp 164.4–165.1 °C; 25.2 mg, yield 46%; 1H NMR (600 MHz, CDCl3) δ 8.56 (s, 1H), 7.63 (d, J = 7.3 Hz, 1H), 7.55–7.43 (m, 5H), 7.29 (t, J = 7.5 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 19.4, 8.0 Hz, 2H), 6.75 (t, J = 7.4 Hz, 1H), 6.48 (s, 1H), 6.30 (d, J = 7.7 Hz, 1H), 5.07 (s, 1H), 3.62 (dt, J = 14.5, 7.4 Hz, 1H), 3.34–3.27 (m, 1H), 0.71 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 192.8, 172.7, 154.3, 143.2, 132.8, 132.1, 131.5, 130.2, 129.8, 126.8, 126.7, 124.7, 124.6, 123.2, 122.5, 118.1, 115.4, 109.7, 97.0, 79.1, 71.6, 42.5, 31.7, 11.4. [α]20D = −175.0 (c 0.12, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL min−1), −83% ee, tminor = 5.91 min, tmajor = 12.47 min.
5bb. Yellow solid, mp 180.5–181.9 °C; 27.4 mg, yield 50%; 1H NMR (600 MHz, CDCl3) δ 8.76 (s, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.24 (t, J = 7.7 Hz, 1H), 7.07 (t, J = 7.4 Hz, 2H), 7.02 (dd, J = 11.3, 4.2 Hz, 1H), 6.85 (d, J = 7.9 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 6.73 (t, J = 7.6 Hz, 1H), 6.64 (t, J = 7.5 Hz, 1H), 6.47 (t, J = 8.7 Hz, 1H), 6.39 (d, J = 7.8 Hz, 1H), 6.25 (s, 1H), 5.41 (s, 1H), 3.82 (dt, J = 14.4, 7.3 Hz, 1H), 3.71–3.64 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 194.5, 174.5, 152.2, 143.0, 132.5, 131.2, 131.1, 130.5, 130.0, 129.7, 129.0, 126.4, 123.7, 123.6, 123.0, 122.8, 120.0, 118.7, 109.2, 98.1, 80.8, 72.58 42.5, 31.6, 11.5. [α]20D = −55.6 (c 0.41, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL min−1), 84% ee, tmajor = 5.20 min, tminor = 7.23 min.
4bf. Yellow solid, mp 182.3–183.8 °C; 22.5 mg, yield 46%; 1H NMR (600 MHz, CDCl3) δ 8.71 (s, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.50–7.41 (m, 3H), 7.23–7.17 (m, 1H), 7.09 (t, J = 7.7 Hz, 1H), 6.96 (dd, J = 12.1, 5.0 Hz, 2H), 6.91 (d, J = 8.2 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 6.66 (dd, J = 10.8, 4.2 Hz, 1H), 6.41 (d, J = 9.1 Hz, 1H), 6.22 (d, J = 7.5 Hz, 1H), 4.97 (s, 1H), 3.54 (dt, 14.0, 7.0 Hz, 1H), 3.23 (dt, J = 13.9, 6.9 Hz, 1H), 0.62 (t, J = 7.3 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 193.0, 172.7, 171.2, 162.3, 154.4, 143.2, 132.0, 131.6, 131.6, 129.8, 126.7, 124.7, 124.5, 122.4, 118.1, 115.4, 114.0, 113.9, 109.6, 97.0, 79.1, 71.6, 60.5, 42.5, 11.4. [α]20D = −142.4 (c 0.19, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (20% 2-propanol/hexane, 1.0 mL min−1), −82% ee, tminor = 7.78 min, tmajor = 19.81 min.
5bf. Yellow solid, mp 172.3–173.1 °C; 30.0 mg, yield 47%; 1H NMR (600 MHz, CDCl3) δ 8.85 (s, 1H), 7.16 (t, J = 7.7 Hz, 1H), 7.11 (dd, J = 8.6, 5.3 Hz, 2H), 6.94 (t, J = 7.7 Hz, 1H), 6.79 (dd, J = 17.4, 8.5 Hz, 3H), 6.70 (d, J = 8.2 Hz, 1H), 6.68–6.63 (m, 1H), 6.56 (t, J = 7.5 Hz, 1H), 6.38 (d, J = 7.3 Hz, 1H), 6.32 (d, J = 7.7 Hz, 1H), 6.23 (d, J = 3.1 Hz, 1H), 5.35 (s, 1H), 3.74 (dt, J = 14.3, 7.3 Hz, 1H), 3.64–3.57 (m, 1H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 194.7, 174.6, 164.0, 162.3, 152.4, 143.1, 131.1, 130.9, 130.8, 129.7, 129.1, 126.5, 123.1, 122.8, 120.2, 118.8, 115.2, 115.1, 109.2, 98.3, 80.8, 72.6, 42.5, 20.8, 11.5. [α]20D = −189.5 (c 0.19, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (20% 2-propanol/hexane, 1.0 mL min−1), 82% ee, tmajor = 6.50 min, tminor = 9.12 min.
4bj. Yellow solid, mp 134.7–135.4 °C; 21.8 mg, yield 45%; 1H NMR (600 MHz, CDCl3) δ 8.49 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.43 (d, J = 8.0 Hz, 2H), 7.27 (dd, J = 12.7, 5.1 Hz, 1H), 7.16 (dd, J = 11.1, 8.4 Hz, 3H), 6.98 (d, J = 8.2 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.73 (t, J = 7.5 Hz, 1H), 6.44 (s, 1H), 6.31 (d, J = 7.7 Hz, 1H), 5.02 (s, 1H), 3.61 (dt, J = 14.5, 7.4 Hz, 1H), 3.29 (dt, J = 14.1, 7.1 Hz, 1H), 2.38 (s, 3H), 0.70 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 193.1, 172.7, 154.5, 143.3, 138.8, 131.9, 130.7, 129.7, 129.6, 127.9, 127.0, 126.6, 124.7, 124.5, 122.2, 118.1, 115.7, 109.6, 79.7, 42.4, 21.5, 20.7, 11.4. [α]20D = −86.7 (c 0.15, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL min−1), −83% ee, tminor = 8.08 min, tmajor = 12.57 min.
5bj. Yellow solid, mp 164.7–165.1 °C; 23.3 mg, yield 48%; 1H NMR (600 MHz, CDCl3) δ 8.78 (s, 1H), 7.25–7.20 (m, 1H), 7.03 (d, J = 7.8 Hz, 2H), 7.01–6.94 (m, 3H), 6.84 (d, J = 7.9 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 6.70 (t, J = 7.6 Hz, 1H), 6.61 (t, J = 7.5 Hz, 1H), 6.41 (d, J = 7.5 Hz, 1H), 6.39–6.33 (m, 2H), 5.45 (s, 1H), 3.82 (dt, J = 14.3, 7.3 Hz, 1H), 3.69–3.63 (m, 1H), 2.23 (s, 3H), 1.05 (q, J = 7.3 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 195.3, 174.6, 152.5, 143.1, 139.3, 131.0, 129.6, 129.2, 128.9, 128.8, 126.6, 123.8, 123.0, 122.5, 118.9, 109.1, 81.6, 72.6, 42.5, 21.2, 20.8, 11.5. [α]20D = −113.8 (c 0.19, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (30% 2-propanol/hexane, 1.0 mL min−1), 82% ee, tmajor = 4.62 min, tminor = 6.47 min.
4bk. Yellow solid, mp 162.1–163.6 °C; 20.0 mg, yield 44%; 1H NMR (600 MHz, CDCl3) δ 8.45 (s, 1H), 7.66 (t, J = 8.1 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.46 (t, J = 8.4 Hz, 2H), 7.29 (dd, J = 10.2, 4.9 Hz, 1H), 7.18–7.13 (m, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.87 (dd, J = 8.8, 5.5 Hz, 2H), 6.73 (t, J = 8.0 Hz, 1H), 6.46–6.42 (m, 1H), 6.31 (d, J = 7.7 Hz, 1H), 5.02 (s, 1H), 3.83 (s, 3H), 3.65–3.59 (m, 1H), 3.30 (ddd, J = 14.1, 8.0, 6.2 Hz, 1H), 0.70 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 193.2, 172.7, 160.0, 154.5, 143.3, 131.9, 131.0, 130.3, 129.7, 127.0, 126.6, 125.8, 124.8, 124.5, 122.1, 118.1, 113.6, 112.5, 109.6, 79.5, 71.5, 55.2, 42.5, 22.7, 11.4. [α]20D = −100.0 (c 0.11, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), −84% ee, tminor = 11.35 min, tmajor = 24.91 min.
5bk. Yellow solid, mp 210.3–211.3 °C; 21.5 mg, yield 43%; 1H NMR (600 MHz, CDCl3) δ 8.72 (s, 1H), 7.23 (t, J = 7.7 Hz, 1H), 7.07 (d, J = 8.6 Hz, 2H), 7.01 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.71 (t, J = 7.6 Hz, 1H), 6.67–6.60 (m, 3H), 6.41–6.32 (m, 3H), 5.47 (d, J = 5.4 Hz, 1H), 3.81 (dt, J = 14.6, 7.3 Hz, 1H), 3.74–3.62 (m, 4H), 1.04 (t, J = 7.3 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 195.3, 174.5, 160.1, 152.5, 143.1, 131.0, 130.3, 129.6, 129.3, 126.7, 125.6, 123.7, 123.0, 122.5, 119.0, 113.5, 109.1, 98.5, 81.4, 72.6, 42.4, 20.8, 11.5. [α]20D = −32.7 (c 0.18, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), 82% ee, tmajor = 5.58 min, tminor = 9.72 min.
4bc/5bc. Yellow solid, 51.9 mg, yield 85%; dr = 1[thin space (1/6-em)]:[thin space (1/6-em)]1. 1H NMR (600 MHz, DMSO) δ 11.80 (s, 1H), 11.68 (s, 1H), 7.80 (d, J = 7.3 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 7.15 (t, J = 7.9 Hz, 1H), 6.96–6.92 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 6.67 (t, J = 8.1 Hz, 2H), 6.61 (t, J = 7.6 Hz, 1H), 6.53 (d, J = 7.1 Hz, 1H), 6.45 (dd, J = 7.6, 0.8 Hz, 1H), 6.43 (s, 1H), 6.37 (d, J = 7.0 Hz, 1H), 6.13 (d, J = 7.4 Hz, 1H), 5.40 (s, 1H), 5.08 (s, 1H), 4.98 (d, J = 15.7 Hz, 1H), 4.91 (d, J = 15.7 Hz, 1H). 13C NMR (150 MHz, DMSO) δ 193.2, 174.5, 153.7, 143.1, 136.0, 133.7, 131.9, 131.0, 130.9, 129.8, 129.1, 128.2, 128.1, 127.4, 126.3, 124.8, 124.6, 123.2, 123.1, 120.3, 118.1, 110.7, 99.3, 96.8, 80.1, 51.5, 44.0. [α]20D = − 42.9(c 0.19, CHCl3); the enantiomeric ratio was determined by HPLC on Chiralpak AD column (25% 2-propanol/hexane, 1.0 mL min−1), −65% ee, tminor = 7.52 min, tmajor = 12.58 min; 50% ee, tmajor = 6.18 min, tminor = 8.85 min.
Crystal data for 4ac (ESI). C25H18BrN3O4S (536.39), Triclinic, space group P[1 with combining macron], a = 9.0285(3), b = 9.3506(3), c = 14.1171(5) Å, V = 1109.38(6) Å3, Z = 10, specimen 0.237 × 0.143 × 0.124 mm3, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 1.987 mm−1, reflections collected 38[thin space (1/6-em)]048, independent reflections 5164 [R(int) = 0.0398], refinement by Full-matrix least-squares on F2, data/restraints/parameters 5164/0/308, goodness-of-fit on F2 = 1.022, final R indices [I > 2(I)] R1 = 0.0418, wR2 = 0.0954, R indices (all data) R1 = 0.0600, wR2 = 0.1048, largest diff. peak and hole 0.989 and −0.734 e Å−3.
Crystal data for 5ac (ESI). C25H18BrN3O4S(536.39), Orthorhombic, space group P2(1)2(1)2(1), a = 7.8034(10), b = 9.5210(13), c = 30.485(4) Å, V = 2264.9(5) Å3, Z = 21, specimen 0.243 × 0.162 × 0.148 mm3, T = 296(2) K, SIEMENS P4 diffractometer, absorption coefficient 1.946 mm−1, reflections collected 11[thin space (1/6-em)]290, independent reflections 4963 [R(int) = 0.0245], refinement by Full-matrix least-squares on F2, data/restraints/parameters 4963/0/307, goodness-of-fit on F2 = 1.004, final R indices [I > 2(I)] R1 = 0.0372, wR2 = 0.0798, R indices (all data) R1 = 0.0588, wR2 = 0.0736, largest diff. peak and hole 0.463 and −0.478 e Å−3.

Acknowledgements

We are grateful for the financial support by the Program for the National Natural Science Foundation of China (21272214).

Notes and references

  1. (a) G. Rousseau, F. Robert, K. Schenk and Y. Landais, Org. Lett., 2008, 10, 4441 CrossRef CAS PubMed; (b) F. Zhao, C. Wang, L. Liu, W.-X. Zhanga and Z. Xi, Chem. Commun., 2009, 6569 RSC; (c) K. Murai, H. Komatsu, R. Nagao and H. Fujioka, Org. Lett., 2012, 14, 772 CrossRef CAS PubMed; (d) K. Bogdanowicz-Szwed, A. Budzowski, R. Gil and P. Serda, Monatsh. Chem., 2010, 141, 63 CrossRef CAS PubMed.
  2. (a) R. Rios, Chem. Soc. Rev., 2012, 41, 1060 RSC; (b) H.-P. Bi, X.-Y. Liu, F.-R. Gou, L.-N. Guo, X.-H. Duan, X.-Z. Shu and Y.-M. Liang, Angew. Chem., Int. Ed., 2007, 46, 7068 CrossRef CAS PubMed; (c) T. Jin, M. Himuro and Y. Yamamoto, Angew. Chem., Int. Ed., 2009, 48, 5893 CrossRef CAS PubMed; (d) F. C. Pigge, J. J. Coniglio and R. Dalvi, J. Am. Chem. Soc., 2006, 128, 3498 CrossRef CAS PubMed; (e) J. Huang and A. J. Frontier, J. Am. Chem. Soc., 2007, 129, 8060 CrossRef CAS PubMed.
  3. G. S. Singh and Z. Y. Desta, Chem. Rev., 2012, 112, 6104 CrossRef CAS PubMed.
  4. (a) R. F. Bond, J. C. A. Boeyens, C. W. Holzapfel and P. S. Steyn, J. Chem. Soc., Perkin Trans. 1, 1979, 1751 RSC; (b) A. Jossang, P. Jossang, H. A. Hadi, T. Sevenet and B. Bodo, J. Org. Chem., 1991, 56, 6527 CrossRef CAS; (c) C. B. Cui, H. Kakeya and H. Osada, Tetrahedron, 1996, 52, 12651 CrossRef CAS; (d) C. B. Cui, H. Kakeya and H. Osada, J. Antibiot., 1996, 49, 832 CrossRef CAS; (e) C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46, 8748 CrossRef CAS PubMed; (f) F. Y. Miyake, K. Yakushijin and D. A. Horne, Org. Lett., 2004, 6, 711 CrossRef CAS PubMed; (g) J. J. Badillo, N. V. Hanhan and A. K. Franz, Curr. Opin. Drug Discovery Dev., 2010, 13, 758 CAS; (h) M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. González-Páez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, Science, 2010, 329, 1175 CrossRef CAS PubMed.
  5. (a) A. P. Antonchick, C. Gerding-Reimers, M. Catarinella, M. Schürmann, H. Preut, S. Ziegler, D. Rauh and H. Waldmann, Nat. Chem., 2010, 2, 735 CrossRef CAS PubMed; (b) B. Tan, N. R. Candeias and C. F. Barbas III, Nat. Chem., 2011, 3, 473 CAS; (c) H. Wu, L.-L. Zhang, Z.-Q. Tian, Y.-D. Huang and Y.-M. Wang, Chem.–Eur. J., 2013, 19, 1747 CrossRef CAS PubMed; (d) R. Ghahremanzadeh, G. I. Shakibaei, S. Ahadi and A. Bazgir, J. Comb. Chem., 2010, 12, 191 CrossRef CAS PubMed; (e) R. Ghahremanzadeh, M. Sayyafi, S. Ahadi and A. Bazgir, J. Comb. Chem., 2009, 11, 393 CrossRef CAS PubMed; (f) B. Liang, S. Kalidindi, J. A. Porco and C. R. J. Stephenson, Org. Lett., 2010, 12, 572 CrossRef CAS PubMed.
  6. (a) W.-B. Chen, Z.-J. Wu, J. Hu, L.-F. Cun, X.-M. Zhang and W.-C. Yuan, Org. Lett., 2011, 13, 92472 Search PubMed; (b) W.-B. Chen, W.-Y. Han, Y.-Y. Han, X.-M. Zhang and W.-C. Yuan, Tetrahedron, 2013, 69, 5281 CrossRef CAS PubMed.
  7. (a) X.-L. Liu, W.-Y. Han, X.-M. Zhang and W.-C. Yuan, Org. Lett., 2013, 15, 1246 CrossRef CAS PubMed; (b) W.-Y. Han, S.-W. Li, Z.-J. Wu, X.-M. Zhang and W.-C. Yuan, Chem.–Eur. J., 2013, 19, 5551 CrossRef CAS PubMed; (c) Y.-M. Cao, F.-F. Shen, F.-T. Zhang and R. Wang, Chem.–Eur. J., 2013, 19, 1184 CrossRef CAS PubMed; (d) H. Wu, L.-L. Zhang, Z.-Q. Tian, Y.-D. Huang and Y.-M. Wang, Chem.–Eur. J., 2013, 19, 1747 CrossRef CAS PubMed; (e) F. Tan, H.-G. Cheng, B. Feng, Y.-Q. Zou, S.-W. Duan, J.-R. Chen and W.-J. Xiao, Eur. J. Org. Chem., 2013, 2071 CrossRef CAS.
  8. (a) Y.-Y. Han, W.-B. Chen, W.-Y. Han, Z.-J. Wu, X.-M. Zhang and W.-C. Yuan, Org. Lett., 2012, 14, 490 CrossRef CAS PubMed; (b) S. Kato, T. Yoshino, M. Shibasaki, M. Kanai and S. Matsunaga, Angew. Chem., Int. Ed., 2012, 51, 7007 CrossRef CAS PubMed.
  9. D. Du, Y. Jiang, Q. Xu and M. Shi, Adv. Synth. Catal., 2013, 355, 2249 CrossRef CAS.
  10. (a) L. L. Andreani and E. Lapi, Boll. Chim. Farm., 1960, 99, 583 Search PubMed; (b) Y. L. Zhang, B. Z. Chen, K. Q. Zheng, M. L. Xu and X. H. Lei, Yaoxue Xuebao, 1982, 17, 17 CAS; (c) L. Bonsignore, G. Loy, D. Secci and A. Calignano, Eur. J. Med. Chem., 1993, 28, 517 CrossRef CAS; (d) K. R. Müller-Vahl, U. Schneider, A. Koblenz, M. Jöbges, H. Kolbe, T. Daldrup and H. M. Emrich, Pharmacopsychiatry, 2002, 35, 57 CrossRef PubMed; (e) K. R. Müller-Vahl, H. Prevedel, K. Theloe, H. Kolbe, H. M. Emrich and U. Schneider, Neuropsychopharmacology, 2003, 28, 384 CrossRef PubMed.
  11. (a) A. G. Shavva, S. N. Morozkina, I. V. Ishchenko, I. I. Eliseev, G. L. Starova, S. I. Selivanov, Sh. N. Abusalimov, S. S. Selivanov, I. Y. Kameneva and N. D. Eshchenko, Bioorg. Khim., 2007, 33, 310 CAS; (b) S. N. Morozkina, S. S. Selivanov, S. I. Selivanov, A. S. Drozdov, N. D. Drozdov and A. G. Shavva, Chem. Heterocycl. Compd., 2009, 45, 1313 CrossRef CAS.
  12. (a) Y. Kashiwada, K. Yamazaki, Y. Ikeshiro, T. Yamagishi, T. Fujioka, K. Mihashi, K. Mizuki, L. M. Cosentino, K. Fowke, S. L. M. Natschke and K. H. Lee, Tetrahedron, 2001, 57, 1559 CrossRef CAS; (b) A. V. Kurdyumov, R. P. Hsung, K. Ihlen and J. Wang, Org. Lett., 2003, 5, 3935 CrossRef CAS PubMed; (c) Y. Kang, Y. Mei, Y. Du and Z. Jin, Org. Lett., 2003, 5, 4481 CrossRef CAS PubMed; (d) Y. Hano, R. Inami and T. Nomura, Heterocycles, 1993, 35, 1341 CrossRef CAS; (e) M. P. Paduraru and P. D. Wilson, Org. Lett., 2003, 5, 4911 CrossRef CAS PubMed.
  13. (a) J.-W. Xie, L.-P. Fan, H. Su, X.-S. Li and D.-C. Xu, Org. Biomol. Chem., 2010, 8, 2177 Search PubMed; (b) Z.-W. Guo, X.-S. Li, W.-D. Zhu and J.-W. Xie, Eur. J. Org. Chem., 2012, 6924 CrossRef CAS.
  14. (a) Y. Sohtome and K. Nagasawa, Synlett, 2010, 1 CAS; (b) L. W. Xu, J. Luo and Y. X. Lu, Chem. Commun., 2009, 1807 RSC; (c) D. W. C. MacMillan, Nature, 2008, 455, 304 CrossRef CAS PubMed; (d) J. T. Mohr, M. R. Krout and B. M. Stoltz, Nature, 2008, 455, 323 CrossRef CAS PubMed; (e) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471 CrossRef CAS PubMed; (f) C. Chandler, P. Galzerano, A. Michrowska and B. List, Angew. Chem., 2009, 121, 2012 (Angew. Chem., Int. Ed., 2009, 48, 1978) CrossRef; (g) L. Albrecht, B. Richter, C. Vila, H. Krawczyk and K. A. Jørgensen, Chem.–Eur. J., 2009, 15, 3093 CrossRef CAS PubMed.
  15. (a) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672 CrossRef CAS PubMed; (b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119 CrossRef CAS PubMed; (c) S. Tian, Y. Chen, J. Hang, L. Tang, P. McDaid and L. Deng, Acc. Chem. Res., 2004, 37, 621 CrossRef CAS PubMed; (d) C. L. Cao, M. C. Ye, X. L. Sun and Y. Tang, Org. Lett., 2006, 8, 2901 CrossRef CAS PubMed.

Footnotes

Electronic supplementary information (ESI) available. CCDC 1001582 and 1001583. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra07860h
These authors contributed equally to this work.

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.